Perché studiare chimica e fisica? L’innalzamento ebullioscopico

Avete presente la classica robetta sul mettere il sale prima o dopo che l’acqua ha cominciato a bollire? Questa cosa mi ha sempre lasciato perplesso perché ho sempre pensato che chiunque abbia frequentato con profitto le scuole superiori conosca le proprietà colligative e sa cosa significa innalzamento ebullioscopico. Traduco per i meno esperti: l’innalzamento ebullioscopico è l’innalzamento della temperatura di ebollizione di un solvente quando in esso vengano aggiunti dei soluti. Nel caso specifico, il solvente è l’acqua mentre il soluto è il cloruro di sodio (NaCl), popolarmente conosciuto come sale da cucina.

La solubilità in acqua del cloruro di sodio a 100 °C è di circa 400 g L-1.

L’innalzamento ebullioscopico si calcola usando la formuletta:

ΔT=keb · m · i                                                                                         (1)

dove ΔT è la variazione della temperatura di ebollizione tra il solvente che contiene il soluto e quella del solvente puro; keb è una costante che si chiama costante ebullioscopica. Essa è tabulata per ogni solvente. Per l’acqua, la keb assume il valore di 0.512 °C kg mol-1. Infine, m è la cosiddetta molalità, ovvero la concentrazione di soluto espressa in mol kg-1, dove il peso si riferisce al solvente usato, mentre i è il cosiddetto coefficiente di Vant’Hoff.

Adesso possiamo applicare la formuletta (1) per calcolare quale quantità di cloruro di sodio permette di alzare la temperatura di ebollizione dell’acqua di quantità note. Quelle che che ho preso in considerazione sono le seguenti:

ΔT = 0.01; 0.025; 0.05; 0.075; 0.1; 0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2; 2.25; 2.5; 2.75; 3; 3.25; 3.5

Dal grafico riportato nella figura qui sotto, ne viene che per aumentare di un solo grado centigrado la temperatura di ebollizione di un litro di acqua occorrono circa 114 g di NaCl. In realtà, noi non aggiungiamo mai oltre 100 g di sale nell’acqua che mettiamo a bollire per la pasta. Tutt’al più ne usiamo un decimo, ovvero circa una decina di grammi. Dallo stesso grafico si evince come l’aggiunta di una decina di grammi di NaCl ad un litro di acqua innalza il punto di ebollizione nell’intervallo 0.075 – 0.1 °C. In altre parole, la temperatura di ebollizione passa da 100 °C all’intervallo di temperature compreso tra 100.08 e 100.1 °C.

Ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

Edit: nel calcolo dell’innalzamento ebullioscopico non ho tenuto conto del coefficiente di Vant’Hoff che, per il cloruro di sodio, è pari a 2. Questo vuol dire che, introducendo questo fattore di correzione, l’aumento di temperatura dell’acqua a cui si aggiungono grosso modo una decina di grammi di NaCl è intorno a 0.1-0.2 °C. Insomma, da 100 °C si passa a 100.1-100.2 °C. Rimane sempre valida la domanda: ancora pensate, voi adulti, che chiedere se aggiungere il sale prima o dopo l’ebollizione sia una domanda seria?

 

Fonte dell’immagine di copertina

I segreti della grandine

Ogni anno sentiamo parlare di enormi “palle” di ghiaccio che cadono dal cielo e fanno danni enormi non sono solo alle cose (auto, case, etc.), ma anche alle attività produttive come l’agricoltura.

Oggi non mi voglio interessare dei danni che può fare la grandine, ma solo concentrarmi  sui meccanismi della sua formazione per capire a cosa essa sia dovuta e perché i chicchi di grandine possono avere dimensioni variabili fino ad arrivare a quelle di una palla come evidenziato nella foto di copertina.

La geografia dell’atmosfera

La parte di spazio che si estende dalla superficie terrestre fino a circa 16 km di altezza prende il nome di troposfera. È qui che avvengono i fenomeni climatici. L’aria della troposfera è composta non solo da ossigeno e azoto, ma anche da acqua, ossidi di azoto e zolfo, anidride carbonica, monossido di carbonio, gas nobili, sostanze organiche volatili che derivano sia dall’attività antropica che da quella naturale (per esempio, le molecole odorose che vengono rilasciate dalle piante), virus, batteri, funghi, spore e molto altro ancora. Naturalmente tutti questi sistemi sono posizionati a quote differenti in funzione delle loro dimensioni, cosicché, per esempio, virus, batteri, funghi e spore sono più vicini al suolo.

L’esperienza comune ci insegna che quando andiamo su in montagna la temperatura si abbassa. E chi è abituato a viaggiare in aereo sa che più in alto si sale più la temperatura tende a scendere: quanti di quelli che viaggiano in aereo non hanno mai letto sui monitor all’interno delle cabine che la temperatura esterna è di -32 °C oppure addirittura di -50 °C?

Vi siete mai chiesti perché?

Ne avevo già parlato l’anno scorso. Una spiegazione approfondita sulle variazioni di temperatura al variare della quota è al link seguente:

Fa freddo lassù?

In breve, possiamo dire che più vicini siamo al suolo, più risentiamo della radiazione elettromagnetica (indicata come infrarosso) proveniente dalla Terra.

Rimando al mio articolo dell’anno scorso per capire perché ci sono oscillazioni termiche man mano che si passa dalla troposfera alla stratosfera, da questa alla mesosfera e da quest’ultima alla termosfera.

E’ proprio la troposfera che dobbiamo tener d’occhio per spiegare la formazione della grandine.

Come si forma la grandine

Tutto ha inizio nei cumulonembi. Si tratta di nuvole a forte sviluppo verticale che si formano per effetto di processi convettivi attraverso cui enormi quantità di aria, contenente acqua, vengono movimentate sia verso l’alto che verso il basso, raggiungendo altezze che possono arrivare fino a 12-16 km. In queste enormi nubi le temperature sono molto variabili potendo passare da valori pari a 0 °C a valori compresi tra -50 e -60 °C.

Tutti noi sappiamo che quando l’acqua è a 0 °C si trova nello stato solido. Tuttavia, non tutti sanno che esiste una condizione che si chiama sopraffusione nella quale l’acqua è in una condizione metastabile, ovvero, in assenza di perturbazioni, essa permane nella fase liquida. Divertitevi a vedere cosa accade per effetto della sopraffusione:

L’acqua sopraffusa è presente prevalentemente nelle zone basse dei cumulonembi, mentre nelle zone più alte si formano dei piccolissimi granelli di ghiaccio, detti embrioni – il mio vecchio professore di chimica analitica li avrebbe chiamati “gemme” – che, per effetto delle correnti convettive, tendono a portarsi nelle zone basse delle nuvole. Quando i minuscoli granelli di ghiaccio incontrano l’acqua sopraffusa, la catturano. In questo modo le dimensioni delle gemme aumentano. Le correnti convettive riportano questi granelli accresciuti di nuovo verso l’alto e poi ancora verso il basso dove si accrescono ulteriormente. Quando le dimensioni delle particelle di ghiaccio diventano tali da non poter essere più trasportate dalle correnti convettive, queste ricadono verso terra sotto forma di grandine. Una descrizione più particolareggiata e corretta della formazione della grandine la potete trovare cliccando sull’immagine qui sotto.

Le dimensioni della grandine

Come ho scritto più su, la grandine si presenta di dimensioni molto differenti: si va da piccolissimi chicchi (pochi millimetri) fino a pezzi di ghiaccio delle dimensioni di palle da tennis o da baseball. Come mai c’è questa diversificazione?

Beh…tutto dipende dalla velocità con cui essa si forma, dalla direzione delle correnti convettive, dalla concentrazione di acqua sopraffusa e dalla temperatura alla base ed in quota del cumulonembo.

Nel filmato qui sotto potete osservare un “bombardamento” di grandine occorso a Rozzano circa una settimana fa (la notizia è qui)

Fonte dell’immagine di copertina

Chimica delle superfici e delle interfasi: l’effetto Marangoni e le lacrime del vino

Guardate la foto di Figura 1. Il bicchiere sembra vuoto. In realtà avevo appena finito di bere un buonissimo vino e in controluce si osservano quelle che gli esperti chiamano le “lacrime del vino“. Di cosa si tratta?

Figura 1. Immagine delle lacrime del vino in controluce

Il titolo di questa nota richiama il nome di un fisico italiano, il Dr. Marangoni, che nel 1865 per primo razionalizzò la formazione di queste lacrime. A onor del vero, il Dr. Marangoni studiò la dinamica del trasferimento di massa lungo una superficie.  All’interno del modello da lui sviluppato si inquadra la formazione delle suddette lacrime.

Ma andiamo con ordine.

Prendiamo in considerazione una miscela di due liquidi che, per semplicità, indichiamo con A e B. Dalla chimica sappiamo che ogni liquido è in equilibrio con il suo vapore attraverso la relazione:

Nell’immagine ho considerato le due componenti della miscela separatamente. I pedici (l) e (g) indicano la fase liquida e gassosa, rispettivamente.

Gli equilibri descritti sono tanto più spostati verso la fase gassosa quanto più piccolo è lo spessore della fase liquida. Una spiegazione semplicistica di ciò è che più piccolo è lo spessore, minore è la forza con cui le molecole  sono tenute legate alla superficie del liquido. Come conseguenza, le molecole sulla superficie di uno strato di liquido sottile riescono a “passare” più facilmente alla fase gassosa rispetto a quelle che sono sulla superficie di uno strato di liquido più spesso.

Cosa succede quando mescoliamo i due liquidi?

Quando i due liquidi vengono mescolati, l’equilibrio tra le fasi si può descrivere così:

In altre parole, ciò che è presente nella fase liquida lo è anche in quella gassosa. Ciò che cambia nella composizione della fase liquida rispetto a quella gassosa è il rapporto relativo tra le componenti.

Supponiamo, tanto per esempio, che la componente A abbia un punto di ebollizione più elevato rispetto a quello della componente B. Questo vuol dire che a parità di temperatura, le molecole di B si allontanano dalla superficie liquida più facilmente delle molecole di A. La conseguenza è che mentre la fase liquida contiene una maggiore quantità del composto A (che è più alto bollente), la fase gassosa contiene una maggiore quantità del composto B (che è più basso bollente).

Variazioni delle proprietà fisiche

La miscela fatta da A e B ha proprietà fisiche che sono intermedie tra quelle delle singole componenti. Ma cosa accade quando la stessa miscela si trova in due situazioni fisiche differenti, ovvero in un caso la fase liquida ha uno spessore più grande che nell’altro?

Quando diminuiamo lo spessore della fase liquida, la fase gassosa si arricchisce della componente più basso bollente e la densità del liquido (cioè il peso per unità di volume) tende verso quella della componente più alto bollente. Volendo semplificare con un linguaggio pseudo matematico, possiamo scrivere:

d(A+B) →dA

dove la lettera d indica la densità; il pedice (A+B) si riferisce alla miscela, mentre la freccia (→) si legge “tende”.

La tensione superficiale e la capillarità

Avete presente l’acqua? Sì…proprio quella che si scrive H2O. Ebbene, quando questa molecola è assieme alle sue sorelle gemelle, accade che si generino delle proprietà che ogni singola molecola presa da sola non ha. In effetti quando diciamo che l’acqua bolle a 100 °C o diventa solida a 0 °C non stiamo parlando di proprietà di una singola molecola. Temperatura di ebollizione, temperatura di fusione, densità etc. sono tutte proprietà che fanno riferimento ad insiemi di molecole che interagiscono tra loro. Le molecole di acqua, in particolare, interagiscono tra loro mediante una rete di legami a idrogeno. Per semplicità rimando ad una mia nota per comprendere il ruolo che i legami a idrogeno hanno nel determinare alcune caratteristiche dell’acqua.

Il ruolo dei legami a idrogeno nel comportamento dell’acqua

Qui sotto, invece, un altro articolo in cui si evidenzia come i legami a idrogeno influenzino la dinamica dei protoni e degli ossidrilioni.

Meccanismo di Grotthuss

I legami a idrogeno sono anche responsabili di quella che viene indicata come tensione superficiale dell’acqua.

Prendiamo una bacinella e riempiamola di acqua. Immaginiamo ora di diventare piccoli fino ad arrivare alle dimensioni delle molecole di acqua. Quello che potremmo immaginarci di vedere all’interno della bacinella è un insieme di molecole che interagiscono tra loro in modo differente a seconda della loro posizione nel contenitore (Figura 2).

Figura 2. Molecole di acqua in una bacinella. Le forze attrattive tra le molecole dipendono dalla posizione nel contenitore

In particolare, le molecole di acqua che sono nel bel mezzo della bacinella sono circondate da analoghe molecole che le attraggono con forze (dovute ai legami a idrogeno intermolecolari) identiche in tutte le direzioni.

Le molecole di acqua che sono accanto alle pareti del recipiente sono attratte con forze di un certo tipo dalle pareti e con forze differenti dalle molecole di acqua ad esse vicine. Cerchiamo di capire perché. Ho già scritto che le forze che consentono alle molecole di acqua di interagire tra loro sono dovute ai legami a idrogeno intermolecolari. Per completezza aggiungo che queste forze vengono indicate come “forze di coesione” perché consentono alle molecole di acqua di essere “coese” tra loro. Le forze con le quali le pareti del recipiente agiscono sulle molecole di acqua con cui entrano in contatto si indicano come “forze di adesione”. Esse possono essere dovute sia alla formazione di dipoli indotti che a legami a idrogeno veri e propri. Questi ultimi, tuttavia, hanno energia differente rispetto a quelli che si formano tra identiche molecole di acqua a causa della differente natura chimica delle pareti del contentinore.

Infine, le molecole di acqua che si trovano in superficie risentono, da un lato, della presenza dei legami a idrogeno con analoghe molecole più interne nel liquido, dall’altro della presenza dell’aria atmosferica con cui esse non possono interagire allo stesso modo. Per questo motivo, l’energia termica necessaria per far “staccare” le molecole dalla superficie è meno intensa di quella necessaria per far allontanare le molecole più interne che sono “ancorate” meglio ad un numero maggiore di molecole di acqua.

Adesso restringiamo la bacinella di prima alle dimensioni di un capillare e cerchiamo di capire cosa accade (Figura 3).

Figura 3. Esempio di risalita capillare

In pratica diminuisce lo spazio a disposizione delle molecole di acqua che cominciano ad interagire sempre più fortemente con le pareti del recipiente. Le molecole a contatto con le pareti iniziano, quindi, ad “arrampicarsi” e si “trascinano” dietro tutte quelle che non sono direttamente interagenti con le pareti stesse. A causa delle forze di coesione più intense nella zona di spazio centrale (quella più lontana dalle pareti, per intenderci) si genera un menisco. Da un punto di vista fisico si osserva un fenomeno che  senza le spiegazioni appena date aparirebbe magico, ovvero quella che è conosciuta comunemente come risalita capillare. Essa spiega la presenza di elevate concentrazioni di sali sulla superficie di suoli indicati come suoli salini, il movimento della linfa nelle piante e l’imbibizione di materiali porosi come la carta Scottex® che usiamo in cucina per asciugare le superfici su cui abbiamo fatto cadere l’acqua.

Le lacrime del vino

Siamo arrivati al momento cruciale: la spiegazione chimico-fisica delle lacrime del vino.

Il vino è una miscela complessa in cui le due componenti più importanti sono acqua e alcol etilico (indicato volgarmente con il solo termine di “alcol”). Non me ne vogliano gli enologi, ma il vino altro non è che una soluzione acquosa di alcol etilico. La poesia che i sommelier e gli enologi vedono nel vino è dovuta ad una piccolissima quantità di altre componenti che sono responsabili del sapore e del profumo di tale bevanda.

Tra le due componenti più abbondanti del vino, l’acqua è la più alto bollente (la temperatura di ebollizione a 1 atm è 100 °C), mentre l’etanolo ha una temperatura di ebollizione più bassa (a 1 atm, l’etanolo bolle a circa 78 °C). Aggiungiamo anche che la densità dell’etanolo a temperatura ambiente è circa 0.78 g/cm3 e quella dell’acqua è circa 1.0 g/cm3. La densità media dei vini è circa 0.99 g/cm3.

Mettiamo ora idealmente del vino in un calice e ruotiamo il calice (Figura 4).

Figura 4. Calici di vino che vengono fatti ruotare (Fonte)

Per effetto della rotazione, si genera un sottilissimo strato di liquido sulle pareti del calice. Alla luce di tutto quanto descritto nei paragrafi precedenti, ne viene che l’alcol etilico si allonatana facilmente da questo strato sottile. A causa di ciò, si intensificano le forze di adesione che spingono il liquido verso l’alto. Più il liquido si sposta verso l’alto, più si assottiglia lo strato e più facilmente l’alcol evapora. Come conseguenza aumenta progressivamente anche la densità del liquido nello strato sottile, ovvero aumenta il peso per unità di volume. Questo perché, alla luce delle spiegazioni date prima, la densità del liquido tende a quella dell’acqua. Quando, per effetto dell’aumento di densità, la forza di gravità diventa predominante sulle forze di adesione, l’anello di liquido che sale verso l’alto si rompe ed incominciano a formarsi gocce ed archetti, ovvero le lacrime del vino. Qualitativamente parlando, più elevato è il contenuto alcolico del vino e più elevato è il numero di gocce ed archetti.

Le lacrime del vino si formano sempre?

No. Non sempre le lacrime si formano. Come abbiamo visto, è necessario che per effetto della rotazione e conseguente evaporazione dell’alcol etilico, si intensifichino le forze di adesione che spingono lo strato sottile di liquido verso l’alto. Come ho già scritto, le forze di adesione sono dovute a interazioni dipolari e/o legami a idrogeno. Questo significa che se non ci sono “agganci” a cui le molecole di acqua si possono ancorare, non si possono formare le lacrime del vino. In altre parole, le lacrime dipendono da quanto bene abbiamo lavato i nostri calici. Se il lavaggio ha completamente “sgrassato“ le pareti del recipiente, gocce ed archetti non si formano.

Letture di approfondimento

Se avete voglia di leggere curiosità in merito a viti, vitigni, vinificazione e vini potete andare a leggere il blog di VinOsa

Fonte dell’immagine di copertina

Così riciclò Bellavite

di Enrico Bucci, Pellegrino Conte, Salvo Di Grazia

Riassunto

Il plagio scientifico è un problema attuale e molto studiato. Consiste nel copiare e usare di nuovo, riciclare, intere parti di uno studio per comporne uno diverso. Come si può capire, questo è un comportamento molto scorretto, dannoso per la ricerca e che dimostra atteggiamento antiscientifico, tanto da essere considerata una vera e propria forma di frode scientifica, perché con il plagio si “gonfia” l’evidenza a favore di una propria idea. Questo comportamento può avvenire o con il riciclo di propri lavori o con quello di altri ed è spesso usato in studi di basso livello e in riviste predatorie, allo scopo di aumentare il numero di propri lavori (visto lo sforzo minimo nel produrre studi “copiati”). Ovviamente, per definire “plagiato” o riciclato uno studio, esistono diversi criteri e anche dei software che li analizzano automaticamente. Devono essere ripetute un certo numero di parole, di frasi, di successioni di frasi, con regole stabilite e precise. Analizzando uno degli ultimi studi sugli effetti dell’omeopatia si è scoperto come questo fosse successo in maniera ripetuta ed estesa, soprattutto da quando l’autore ha pubblicato in riviste predatorie. Utilizzando un software (ithenticate o altri, ma si può verificare anche personalmente, vista l’entità del gesto) si noteranno ripetuti blocchi di testo riciclati nei vari studi dell’autore, cosa ripetuta nel tempo. Un altro aspetto preoccupante emerso da questa analisi è il fatto che l’autore ha deliberatamente eliminato informazioni importanti nei testi da lui usati per le pubblicazioni, informazioni che cambiano radicalmente le caratteristiche degli studi e quindi le conclusioni che lui descrive in maniera personale e non attinente alla realtà. Stiamo analizzando quindi un vero e proprio lavoro di manipolazione dei dati non dichiarato, fatto molto grave e da rendere pubblico; se poi l’abbondante riciclo di testo ritrovato costituisca plagio e frode scientifica, lo lasciamo decidere al lettore.

Introduzione

Una delle tecniche attraverso le quali la pseudoscienza manipola l’evidenza ad essa favorevole è quello di utilizzare riviste cosiddette “predatorie” per ingrossare le fila delle pubblicazioni in supporto. Queste riviste hanno la precipua caratteristica di garantire la pubblicazione di qualunque sciocchezza in cambio di denaro, producendo dei documenti che hanno tutta l’apparenza di pubblicazioni scientifiche, salvo il fatto che essi non sono passati attraverso una revisione dei pari (peer review) degna di questo nome, e dunque sono privi di ogni garanzia di qualità.
È questo il caso dell’ultima pubblicazione in supporto dell’uso dell’omeopatia prodotta dal pensionato ed ex medico Paolo Bellavite, il quale crede di poter dare supporto all’uso dell’omeopatia invece che degli antibiotici anche nell’otite media acuta, la condizione che ha portato a morte il piccolo Francesco a cui il medico omeopata Mecozzi ha negato gli antibiotici in favore di rimedi omeopatici.
Questa pubblicazione, approvata in una settimana dalla sottomissione, è stata già analizzata da due gruppi del Patto Trasversale per la scienza, dedicati rispettivamente all’omeopatia e all’integrità nella ricerca scientifica, che ne hanno sottolineato le numerose manchevolezze anche di contenuto; tuttavia, un aspetto finora non è stato trattato, e sarà discusso di seguito.
Detta in due parole, la review risulta consistere in un pastiche di testi riciclati molteplici volte, le cui fonti temporalmente più prossime sono lavori dello stesso Bellavite, ma che in realtà possono essere ricondotti originariamente a testi di altri autori.
Inoltre – e questo è forse un aspetto ancora più grave – vi sono alcune evidenze di riuso selettivo dei testi originali, fatto in modo da distorcerne gravemente il significato originario e da fornire evidenze inesistenti alle ipotesi di Bellavite che l’omeopatia sia migliore del placebo – una forma di falsificazione inaccettabile.
Attraverso questi due mezzi – la pubblicazione predatoria e il riutilizzo di materiali già pubblicati, anche dagli stessi autori – si ottiene il doppio scopo di produrre lavori apparentemente “nuovi” in supporto dell’omeopatia e di aumentare citazioni e impatto dell’autore principale, il quale non a caso ha anche recentemente vantato il suo H-index rispetto a quello di altri ricercatori critici del suo lavoro.

Riciclo testuale in Bellavite et al., 2019: analisi generale

Una semplice analisi mediante software (ithenticate) permette di identificare larghe porzioni di testo riciclate all’interno del lavoro in questione. Di seguito sono mostrate le aree di testo riciclate per ciascuna pagina, colorate secondo il gruppo di fonti che le contiene; le pagine della review sono mostrate consecutivamente in gruppi di tre. Si noti che per l’analisi sono state considerate solo quelle fonti che contengano almeno 100 parole in comune con la review in analisi, e non sono stati considerate valide identità testuali di meno di 5 parole consecutive. Dall’analisi è stata ovviamente esclusa la bibliografia della review.

Sebbene soventemente il software utilizzato possa non riconoscere alcune identità testuali – per esempio le parole spezzate per andare a capo interrompono il riconoscimento– si può notare che la gran parte del testo risulta ripreso da fonti precedenti.
In particolare, le zone evidenziate in rosso ed in magenta nel testo di Bellavite risultano essere presenti reiteratamente nelle seguenti fonti dello stesso autore:

  1. Bellavite P, Marzotto M, Chirumbolo S, Conforti A. Advances in homeopathy and immunology: A review of clinical research. Front Biosci – Sch. 2011;3 S(4):1363-1389.
  2. Bellavite P, Chirumbolo S, Magnani P, Ortolani R, Conforti A. Effectiveness of homeopathy in immunology and inflammation disorders: a literature overview of clinical studies. Homoeopath Herit. 2008;33(3):35-58.
  3. Bellavite P, Ortolani R, Pontarollo F, Piasere V, Benato G, Conforti A. Immunology and homeopathy. 4. Clinical studies – Part 1. In: Evidence-Based Complementary and Alternative Medicine. Vol 3. ; 2006:293-301.

Come è agevole notare, si tratta del grosso del testo della review; in particolare, la prima delle fonti elencate, che possiede la maggior quantità di testo in comune con la successiva review del 2019, già include 20 dei 41 lavori poi selezionati per la review del 2019, utilizzando nelle descrizioni identico testo.

Le due pubblicazioni più recenti (la prima e la seconda), come la review del 2019 che ne ricicla il testo, sono pubblicate su riviste che non sono nemmeno indicizzate da PubMed. La cosa è particolarmente interessante, in quanto nella review che qui si analizza, per giustificare il fatto che i lavori non indicizzati su PubMed non saranno considerati nell’analisi, è scritto testualmente:

“Our previous systematic review on the effect of homeopathy in immunological disorders also included non-peer-reviewed papers published until 2010, but in this report we have restricted the report to clinical trials and observational studies cited by PubMed, which is considered the most important search system of bibliographic resources, also for homeopathy and other CAMs [38-40]. As it is known (see for example https://www.nlm.nih.gov/lstrc/jsel.html), the scientific merit of a journal’s content is the primary consideration in selecting journals for indexing in PubMed, especially on the explicit process of external peer review and adherence to ethical guidelines. The publication of a paper in a journal cited by PubMed is not in itself a guarantee of quality, but it can be considered an important criterion of validity, since it is certain that the work was judged by experts in the field before is accepted.”

Peraltro, a parte l’indicizzazione su PubMed, va detto che il lavoro del 2011, come quello del 2019, è pubblicato su rivista predatoria.

Quello del 2008 è pubblicata sulla rivista di un editore indiano, sospetta ed infatti non presente nel DOAJ (Directory of Open Access Journals); infine, il lavoro del 2006 è stata pubblicato da un giornale del gruppo egiziano Hindawi, considerato almeno fino al 2010 predatorio[1] (e successivamente border-line).

Se si considerano oltre alle tre principali anche tutte altre le fonti identificate (cioè tutte le sorgenti per il testo colorato sovrapposto alle pagine della review nelle figure precedenti), appare evidente che la review del 2019 è ridondante, in quanto ricicla in massima parte identici testi precedenti (come visto, spesso pubblicati su riviste di bassa qualità o francamente predatorie).

Riciclo testuale in Bellavite et al., 2019: modus operandi

La semplice analisi delle parti di testo riciclate, illustrata nella sezione precedente, non consente di identificare agevolmente se il riciclo testuale sia abitudine consolidata o eccezione da parte degli autori in questione.

Uno studio più approfondito, di tipo filogenetico, prevede l’identificazione delle eventuali sequenze di riciclo che hanno portato fino al testo che appare nella review del 2019. A titolo di esempio, si illustrerà quanto emerso per la pagina 5 della review in esame.

Il testo principale può essere considerato diviso in 4 blocchi, secondo la sua provenienza originale, come illustrato nell’immagine di seguito.

 

Per quanto riguarda il BLOCCO 1, esso risulta derivare attraverso 4 passaggi successivi di riciclo da un testo di Bellavite et al. del 2006, come illustrato nei passaggi indicati tra le linee tratteggiate di seguito (parti conservate con la review del 2019 in rosso; in blue parti originariamente conservate, che successivamente si perdono nei vari passaggi).

_______________________________________________

Bellavite P, Ortolani R, Pontarollo F, Piasere V, Benato G, Conforti A. Immunology and homeopathy. 4. Clinical studies – Part 1. In: Evidence-Based Complementary and Alternative Medicine. Vol 3. ; 2006:293-301.

De Lange de Klerk (62) performed a double-blind, randomized study that evaluated the frequency, duration and severity of rhinitis, pharyngitis and tonsillitis in a group of children. The homeopathic prescription included ‘constitutional’ remedies for preventive purposes and remedies treating acute phases. The year-long therapy was continuously adjusted on an individual basis, and data were collected by means of diaries kept by parents and attending physicians. Results showed that homeopathic therapy was slightly but not significantly better than placebo.

Bellavite P, Chirumbolo S, Magnani P, Ortolani R, Conforti A. Effectiveness of homeopathy in immunology and inflammation disorders: a literature overview of clinical studies. Homoeopath Herit. 2008;33(3):35-58.

De Lange et al. (45) carried out a double-blind, randomized study which they evaluated the frequency, duration and severity of rhinitis, pharyngitis and tonsillitis in a group of childrenThe homeopathic prescription included “constitutional” remedies for preventive purposes and remedies for the treatment of acute phases. The year-long therapy was continuously adjusted on an individual basis, and the data were collected by means of diaries kept by the parents and attending physiciansThe results showed that the homeopathic therapy was slightly but not significantly better than placebo: the mean number of infective episodes was 7.9/year in the treated group and 8.4/year in the control group. The children in the active group experienced episodes that were generally shorter and less severe, and were disease-free for 53% of the days (as against 49% in the placebo group)

Bellavite P, Marzotto M, Chirumbolo S, Conforti A. Advances in homeopathy and immunology: A review of clinical research. Front Biosci – Sch. 2011;3 S(4):1363-1389.

Individualized homeopathy

De Lange and coworkers (38) carried out a double-blind, randomised study in which they evaluated the frequency, duration and severity of rhinitis, pharyngitis and tonsillitis in a group of childrenThe homeopathic prescription included “constitutional” remedies for preventive purposes and remedies for the treatment of acute phases. The year-long therapy was continuously adjusted on an individual basis, and the data were collected through diaries kept by the parents and attending physicians. The results showed that the homeopathic therapy was slightly but not significantly better than the placebo: the mean number of infective episodes was 7.9/year in the treated group versus 8.4/year in the control group. The children in the active group experienced episodes that were generally shorter and less severe; the percentage of children not requiring antibiotics was 62% for homeopathy against 49% for conventional therapyThe authors conclude that the differences between the two treatments are interesting but slight.

Bellavite P, Marzotto M, Andreoli B. Homeopathic Treatments of Upper Respiratory and Otorhinolaryngologic Infections: A Review of Randomized and Observational Studies. Altern Complement Integr Med. 2019;5(2):1-20.

Randomized Trials of Individualized homeopathy

De Lange and coworkers carried out a double-blind, randomized study which they used to evaluate the frequency, duration and severity of rhinitis, pharyngitis and tonsillitis in a group of children [44]. The homeopathic prescription included “constitutional” medicines for preventive purposes and medicines for the treatment of acute phases. The year-long therapy was continuously adjusted on an individual basis, and the data was collected by means of diaries kept by the parents and attending physicians. The results showed that the homeopathic therapy was slightly but not significantly better than the placebo: the mean number of infective episodes was 7.9/year in the treated group and 8.4/year in the control group. The children in the active group experienced episodes that were generally shorter and less severe; the percentage of children not requiring antibiotics was 62% vs. 49% in homeopathy and conventional therapy respectively. The authors concluded that the differences between the two treatments were interesting but small (odds ratio favoring homeopathy versus placebo: 1.67, 95% CI: 0.96-28.9).

Per quanto riguarda il BLOCCO 2, esso risulta derivare attraverso 5 passaggi successivi di riciclo da un testo di Jacobs et al. del 2001, come illustrato di seguito

Jacobs J, Springer DA, Crothers D. Homeopathic treatment of acute otitis media in children: A preliminary randomized placebo-controlled trial. Pediatr Infect Dis J. 2001;20(2):177-183.

METHODS:

A randomized double blind placebo control pilot study was conducted in a private pediatric practice in Seattle, WA. Seventy-five children ages 18 months to 6 years with middle ear effusion and ear pain and/or fever for no more than 36 h were entered into the study. Children received either an individualized homeopathic medicine or a placebo administered orally three times daily for 5 days, or until symptoms subsided, whichever occurred first. Outcome measures included the number of treatment failures after 5 days, 2 weeks and 6 weeks. Diary symptom scores during the first 3 days and middle ear effusion at 2 and 6 weeks after treatment were also evaluated.

RESULTS:

There were fewer treatment failures in the group receiving homeopathy after 5 days, 2 weeks and 6 weeks, with differences of 11.4, 18.4 and 19.9%, respectively, but these differences were not statistically significant. Diary scores showed a significant decrease in symptoms at 24 and 64 h after treatment in favor of homeopathy (P < 0.05). Sample size calculations indicate that 243 children in each of 2 groups would be needed for significant results, based on 5-day failure rates.

Bellavite P, Ortolani R, Pontarollo F, Piasere V, Benato G, Conforti A. Immunology and homeopathy. 4. Clinical studies – Part 1. In: Evidence-Based Complementary and Alternative Medicine. Vol 3. ; 2006:293-301.

A randomized double-blind placebo control pilot study was conducted (66) in children with otitis media. Subjects having middle ear effusion and ear pain and/or fever for no more than 36 h entered into the study. They received either an individualized homeopathic medicine or a placebo administered orally three times daily for 5 days, or until symptoms subsided. There were fewer treatment failures in the group receiving homeopathy, these differences were not statistically significant. Diary scores showed a significant decrease in symptoms after treatment in favor of homeopathy (P < 0.05).

Bellavite P, Chirumbolo S, Magnani P, Ortolani R, Conforti A. Effectiveness of homeopathy in immunology and inflammation disorders: a literature overview of clinical studies. Homoeopath Herit. 2008;33(3):35-58.

A randomized double-blind placebo control pilot study was conducted (49) in children with otitis mediaSubjects having middle ear effusion and ear pain and/or fever for no more than 36 h entered into the study. They received either an individualized homeopathic medicine or a placebo administered orally three times daily for 5 days, or until symptoms subsided. Outcome measures included the number of treatment failures after 5 days, 2 weeks and 6 weeks. Diary symptom scores during the first 3 days and middle ear effusion at 2 and 6 weeks after treatment were also evaluated. There were fewer treatment failures in the group receiving homeopathy after 5 days, 2 weeks and 6 weeks, with differences of 11.4%, 18.4% and 19.9%, respectively, but these differences were not statistically significant. Diary scores showed a significant decrease in symptoms at 24 and 64 h after treatment in favor of homeopathy (P < 0.05). 

Bellavite P, Marzotto M, Chirumbolo S, Conforti A. Advances in homeopathy and immunology: A review of clinical research. Front Biosci – Sch. 2011;3 S(4):1363-1389.

A randomised double-blind placebo controlled pilot study was carried out (46) on children with otitis mediaSubjects presenting middle ear effusion and ear pain and/or fever for no more than 36 h were enrolled in the trial. They received either an individualised homeopathic remedy or a placebo, administered orally three times daily for 5 days or until symptoms subsided. Outcome measures included the number of treatment failures after 5 days, 2 weeks and 6 weeks. Diary symptom scores during the first 3 days and middle ear effusion at 2 and 6 weeks after treatment were also evaluated. There were fewer treatment failures in the group receiving homeopathy after 5 days, 2 weeks and 6 weeks, however these differences were not statistically significant. Diary scores showed a significant decrease in symptoms at 24 and 64 h after treatment in favour of homeopathy (P < 0.05).

Bellavite P, Marzotto M, Andreoli B. Homeopathic Treatments of Upper Respiratory and Otorhinolaryngologic Infections: A Review of Randomized and Observational Studies. Altern Complement Integr Med. 2019;5(2):1-20.

A randomized double-blind placebo controlled pilot study was carried out on children with otitis media [51]. Subjects presenting middle ear effusion and ear pain and/or fever for no more than 36 h were enrolled in the trial. They received either an individualized homeopathic medicine or a placebo; administered orally three times daily for 5 days or until symptoms subsided. The 4 most commonly medicines prescribed included Pulsatilla, Chamomilla, Sulphur and Calcarea carbonica. Outcome measures included the number of treatment failures after 5 days, 2 weeks and 6 weeks. Diary symptom scores during the first 3 days and middle ear effusion at 2 and 6 weeks after treatment were also evaluated. There were fewer treatment failures in the group receiving homeopathy after 5 days, 2 weeks and 6 weeks. However these differences were not statistically significant. Diary scores showed a significant decrease in symptoms at 24 and 64 h after treatment, in favor of homeopathy (P < 0.05).

Per quanto riguarda il BLOCCO 3, esso risulta derivare attraverso 4 passaggi successivi di riciclo da un testo di Bellavite et al. del 1995, come illustrato di seguito.

Bellavite P, Signorini A, Society for the Study of Native Arts and Sciences. Homeopathy, a Frontier in Medical Science : Experimental Studies and Theoretical Foundations. North Atlantic Books; 1995.

and that of Wiesenauer and coworkers [Wiesenauer et al., 1989; score 60/100], who demonstrated the inefficacy, in the therapy of sinusitis, of a number of remedies prepared from various combinations of Luffa opercolata (dishcloth gourd), Kalium bichromicum (bichromate of potash), and Cinnabaris (cinnabar) (in 3x-4x dilutions).

Bellavite P, Ortolani R, Pontarollo F, Piasere V, Benato G, Conforti A. Immunology and homeopathy. 4. Clinical studies – Part 1. In: Evidence-Based Complementary and Alternative Medicine. Vol 3. ; 2006:293-301.

Wiesenauer et al. (54) compared the effects of three different homeopathic treatments and placebo in patients with acute and chronic sinusitis. In this randomized, double-blind study the patients were divided into four groups: group A: Luffa operculata 4x + Kalium bichromicum 4x + Cinnabaris 3x; group B: K. bichromicum 4x + Cinnabaris 3x; group C: Cinnabaris 3x; and group D: placebo. The study did not reveal any difference in therapeutic effects in the four groups. Their conclusion was that, unless other data emerge from a study of individual homeopathic prescriptions (‘repertorization’), the drugs should not be considered active in acute or chronic sinusitis in the general population; they also pointed out that similar negative results have been obtained with antibiotics, nasal decongestants and drainage of the nasal cavities.

Bellavite P, Marzotto M, Chirumbolo S, Conforti A. Advances in homeopathy and immunology: A review of clinical research. Front Biosci – Sch. 2011;3 S(4):1363-1389.

Wiesenauer and coworkers (32) demonstrated the inefficacy, in the treatment of sinusitis, of a number of remedies prepared from various combinations of Luffa opercolata, Kalium bichromicum, and Cinnabaris (in low homeopathic dilutions). Their conclusion is that, unless other data emerge from a study of individualised homeopathic prescriptions (“repertorisation”), the drugs should not be considered active in acute or chronic sinusitis in the general population; they also point out that similar negative results have been obtained with antibiotics, nasal decongestants and drainage of the nasal cavities.

Bellavite P, Marzotto M, Andreoli B. Homeopathic Treatments of Upper Respiratory and Otorhinolaryngologic Infections: A Review of Randomized and Observational Studies. Altern Complement Integr Med. 2019;5(2):1-20.

A series of medicines for non allergic rhinitis, prepared from various combinations of Luffa opercolata, Kalium bichromicum and Cinnabaris (in low homeopathic dilutions) were compared with a placebo in a double-blind trial [83]. Criteria for the therapeutic result were headache, blocked nasal breathing, trigeminal tenderness, reddening and swelling of nasal mucosa and postnasal secretion. All combinations were ineffective in the treatment of those sinusitis symptoms. The author’s conclusion was that, unless other data emerge from a study of individualized homeopathic prescriptions (“repertorisation”), the drugs should not be considered active in acute or chronic sinusitis in the general population. They also point out that similar negative results have been obtained with antibiotics, nasal decongestants and drainage of the nasal cavities.

Infine, il BLOCCO 4 rappresenta un caso particolarmente interessante. Sebbene in questo caso i passaggi di riciclo testuale, a partire da un articolo di Zabolotnyii et al del 2007, siano soltanto 3, si noti la frase in giallo nel lavoro originale ripreso da Bellavite et al. Quella frase, che mostra come lo studio non sia un paragone tra omeopatia e placebo (ciò che servirebbe per affermare un’efficacia superiore al placebo dell’omeopatia), spiega come i pazienti, in entrambi i gruppi paragonati, abbiano assunto paracetamolo e altri farmaci da banco, in modo che il controllo tra i due gruppi è, di fatto, sporcato, e certo non si può assumere la superiorità dell’omeopatia rispetto al placebo. Proprio questa frase viene eliminata dal testo altrimenti riciclato in entrambe le due successive review pubblicate da Bellavite su due riviste predatorie. Questo comportamento, oltre che il riciclo testuale, essendo distorsivo è definibile come falsificazione per omissione. Di seguito si fornisce l’evidenza per quanto affermato.

Zabolotnyi DI, Kneis KC, Richardson A, et al. Efficacy of a Complex Homeopathic Medication (Sinfrontal) in Patients with Acute Maxillary Sinusitis: A Prospective, Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Trial. Explor J Sci Heal. 2007;3(2):98-109.

Interventions: Fifty-seven patients received Sinfrontal and 56 patients received placebo. Additionally, patients were allowed saline inhalations, paracetamol, and over-the-counter medications, but treatment with antibiotics or other treatment for sinusitis was not permitted.

Results: From day zero to day seven, Sinfrontal caused a significant reduction in the SSS total score compared with placebo (5.8 ± 2.3 [6.0] points vs 2.3 ± 1.8 [2.0] points; P< .0001). On day 21, 39 (68.4%) patients on active medication had a complete remission of AMS symptoms compared with five (8.9%) placebo patients. All secondary outcome criteria displayed similar trends. Eight adverse events were reported that were assessed as being mild or moderate in intensity. No recurrence of AMS symptoms occurred by the end of the eight-week posttreatment observational phase.

Bellavite P, Marzotto M, Chirumbolo S, Conforti A. Advances in homeopathy and immunology: A review of clinical research. Front Biosci – Sch. 2011;3 S(4):1363-1389.

A prospective, randomised, double-blind, placebo-controlled trial carried out in the Ukraine (57) investigated the efficacy of a complex homeopathic medication (Sinfrontal), compared to a placebo, in patients with maxillary sinusitis. Between day zero and day seven, Sinfrontal produced a significant reduction in the total symptom score compared to the placebo (p < 0.0001). Eight adverse events were reported, assessed as being of mild or moderate intensity. The authors suggest that this complex homeopathic medication is safe and appears to be an effective treatment for acute maxillary sinusitis.

Bellavite P, Marzotto M, Andreoli B. Homeopathic Treatments of Upper Respiratory and Otorhinolaryngologic Infections: A Review of Randomized and Observational Studies. Altern Complement Integr Med. 2019;5(2):1-20.

Sinfrontal is a complex homeopathic medication (containing Cinnabaris 4D, Ferrum phosphoricum 3D, Mercurius solubilis 6D) that is used for a variety of upper respiratory tract infections and has shown promise as a treatment for rhinosinusitis. A prospective, randomized, double-blind, placebo-controlled trial, carried out in Ukraine, investigated the efficacy of this complex homeopathic medication compared to a placebo, in patients with maxillary sinusitis [60]. Fifty-seven patients received Sinfrontal and 56 patients received placebo. Between  day zero and day seven, Sinfrontal produced a significant reduction in the total symptom score compared to the placebo (p < 0.0001). After three weeks, 68.4% patients on active medication had a complete remission compared with 8.9% of placebo patients. Eight adverse events were reported, assessed as being of mild or moderate intensity. The authors suggest that this complex homeopathic medication is safe and appears to be an effective treatment for acute maxillary sinusitis. A cost-utility analysis based on data from this trial calculated that Sinfrontal led to incremental savings of €275 per patient compared with the placebo over 22 days, essentially due to markedly reduced absenteeism from work [61].

_______________________________________________

Per avere una visione d’insieme, è possibile raggruppare i dati fin qui esposti circa l’origine dei blocchi di testo che costituiscono la pagina 5 della review di Bellavite recentemente pubblicata.

La situazione è ben rappresentata nello schema seguente, che illustra come l’autore sostanzialmente ricicli nelle sue varie pubblicazioni pezzi di testo propri ed altrui, ricomponendoli di volta in volta secondo necessità e con piccole variazioni.

Si noti come, considerando anche solo la pagina 5 della review del 2019, tutti i lavori sorgente posteriori al primo del 1995 contengono pezzi di testo riciclato, a testimonianza di un modus operandi reiterato.

Naturalmente, nello schema non si tiene conto del fatto che, come appena visto per il blocco 4, il riciclo di testo può essere selettivo e tale da distorcere il significato della fonte originale discussa nelle varie pubblicazioni dell’autore.

Conclusioni

Come è stato ampiamente dimostrato, la recente review pubblicata da Bellavite et al. su rivista predatoria rappresenta un evidente esempio di esteso riciclo testuale; inoltre, l’analisi ha consentito di evidenziare la costanza di tale comportamento nel tempo e anche l’abitudine, almeno recentemente, a pubblicare su riviste predatorie e non indicizzate su PubMed (contraddittoriamente considerata dallo stesso Bellavite standard di qualità).

Inoltre, almeno in un caso è stata documentata la distorsione dell’informazione originariamente pubblicata da altri autori, attraverso l’eliminazione nel testo riciclato di una parte importante di informazione, che indebolirebbe la tesi degli autori del riciclo; tale comportamento, in mancanza di chiare giustificazioni, si configura come falsificazione per omissione.

Il tipo di produzione scientifica esaminato non può quindi avere alcuna utilità nello stabilire l’efficacia dell’omeopatia, soprattutto se paragonato alle serie e metodologicamente solide meta-analisi di segno contrario pubblicate in altre sedi.

Note

[1] Nel 2010, un sottoinsieme delle riviste Hindawi, editore originariamente egiziano, era nella lista dei giornali predatori di Beall, a causa della sospetta cattiva qualità dei processi di revision e della solecitazione via mail di manoscritti; successivemente, Beall rimosse il publisher dalla sua lista, definendolo “border line”. Da allora, il miglioramento di Hindawi è stato continuo, ma non sono mancati numerosi scandali che hanno interessato riviste pubblicate da quell’editore scientifico.

Dal blog di Enrico Bucci; Dal blog di Salvo Di Grazia

Fonte dell’immagine di copertina

Quando anche i cani fanno scienza

Che dire. La fantasia non ha limiti. Un paio di migliaia di anni fa Caligola fece senatore il suo cavallo. Un po’ più recentemente la storia si è ripetuta. Tuttavia, ad essere diventato famoso è stato un cane nominato associate editor di una rivista scientifica che pubblica lavori sull’omeopatia, pratica di cui ho già avuto modo di scrivere più volte (qui). Non ci credete? Veramente non credete che un cane possa essere stato inserito nel board di una rivista scientifica? Ebbene, allora vi invito a leggere le ultime novità in merito all’omeopatia scritte in un articolo pubblicato dal Patto Trasversale per la Scienza (PTS) . Basta cliccare sull’immagine qui sotto e si aprirà una pagina che, se non descrivesse cose reali, farebbe sorridere.

Se volete, invece leggere un riassunto e comunque sorridere, benché di un riso amaro, potete cliccare sull’immagine qui sotto che vi indirizza alla pagina Facebook del Patto Trasversale per la Scienza.

La storia del cane come board member di riviste scientifiche è riportata anche su Science (qui).

Fonte dell’immagine di copertina

Pane all’acqua di mare: realtà o fantasia?

di Enrico Bucci e Pellegrino Conte

Vi ricordate il pane fatto con l’acqua di mare?

Qualche tempo fa le principali agenzie di stampa italiane titolarono a nove colonne che ricercatori italiani avevano scoperto che  il pane fatto usando l’acqua di mare, invece che la normale acqua di rubinetto, aveva proprietà salutistiche migliori del pane tradizionale.

Ecco, per esempio, cosa scriveva il Gambero Rosso già nel 2017:

Una nuova ricetta che consente di risparmiare acqua potabile, offrendo un alimento valido anche per chi è obbligato a seguire una dieta povera di sodio: il pane prodotto con l’acqua di mare è l’ultimo, innovativo progetto nato dalla collaborazione dei panificatori associati all’Unipan con Termomar e il Consiglio Nazionale delle Ricerche

mentre l’ANSA nell’Aprile di quest’anno (2019) scriveva:

Arriva il pane all’acqua di mare. E’ senza sale, ma saporito e povero di sodio

a cui faceva seguito il sito de La Cucina Italiana che riportava:

È iposodico e contiene il triplo di magnesio, il quadruplo di iodio, più potassio, ferro e calcio. Adesso viene distribuito anche nei supermercati

Anche il National Geographic ha riportato la notizia scrivendo che:

Lo ha prodotto il CNR, contiene meno sale rispetto a un filone prodotto con acqua dolce, ed è più ricco di iodio, magnesio e potassio

Insomma un tripudio alla genialità italiana che ha confermato il luogo comune secondo cui siamo un “popolo di eroi, di santi, di poeti, di artisti, di navigatori, di colonizzatori, di trasmigratori” e … di scopritori.

Cosa c’è di vero in tutto quello che è stato riportato dalle agenzie di stampa?

Ovviamente i giornalisti non hanno inventato nulla. È vero che un team di ricercatori italiani ha prodotto un tipo di pane usando acqua di mare e lo ha confrontato col pane prodotto in modo tradizionale ottenuto con acqua di rubinetto ed il comune sale da cucina. È anche vero che gli stessi ricercatori hanno posto un accento particolare sulle proprietà salutistiche del pane da essi “inventato” evidenziandone le qualità superiori rispetto al pane che da sempre siamo abituati a mangiare. La loro “invenzione” è stata oggetto di una pubblicazione su International Journal of Food Properties, una rivista della Taylor & Francis con un Impact Factor di 1.845 per il 2017, dal titolo: “Bread chemical and nutritional characteristics as influenced by food grade sea water”. Quello che i tutti i giornalisti e commentatori non sono stati in grado di fare è una valutazione critica dello studio pubblicato, posto che lo abbiano mai letto. Ma possiamo capire. Il loro compito non è fare valutazioni critiche di lavori pubblicati su riviste scientifiche. Sono pagati per riportare la cronaca di ciò che trovano in rete o che viene loro dato in pasto dalle agenzie di stampa degli Enti di Ricerca, come il CNR, che intendono pubblicizzare le proprie attività interne. Un pane salutistico fatto con l’acqua di mare attrae certamente l’attenzione sia verso l’Ente che ha sovvenzionato la ricerca che verso i giornali che riportano la notizia. Ma quanto c’è di vero nel lavoro che si può facilmente scaricare da questo link?

Avvertenze

Da questo momento in poi la lettura può diventare noiosa perché siamo costretti ad entrare in particolari tecnici senza i quali non è possibile rispondere alla domanda che dà il titolo a questo articolo. Naturalmente, è possibile “saltare” direttamente alle conclusioni se non avete voglia di seguire tutti i passi che ci conducono alla constatazione che lo studio pubblicato è superficiale, progettato ed eseguito male e non giustifica affatto l’esaltazione giornalistica di cui abbiamo già riportato. Ma andiamo con ordine.

Una analisi critica

Nella sezione dedicata ai Materiali e Metodi, gli autori scrivono che l’acqua di mare è stata fornita dalla Steralmar srl, una ditta di Bisceglie (in provincia di Barletta-Andria-Trani, BT). Tuttavia, una attenta lettura dell’intero lavoro evidenzia che da nessuna parte gli autori riportano la benché minima analisi chimica dell’acqua che hanno deciso di usare per la produzione del “loro” pane. Non è riportata neanche l’analisi chimica dell’acqua di rubinetto usata per la produzione del pane usato come controllo per il confronto con il pane “innovativo”. Eppure gli autori discutono delle diverse composizioni chimiche delle tipologie di pane che hanno prodotto. Basta leggere le Tabelle 1 e 2 per rendersi conto di quanto essi ritengano rilevanti le differenze in termini chimici tra i pani prodotti. Tutti i ricercatori sanno che quando si cercano differenze tra prodotti ottenuti in modo differente occorre fornire dei validi punti di partenza per poter capire se le differenze che si evidenziano sono dovute ad errori sperimentali o ai “reagenti” che si utilizzano. Ed allora: qual è la concentrazione salina dell’acqua di mare e dell’acqua di rubinetto?  È presente sostanza organica disciolta in entrambe? Ed il loro pH: è lo stesso o è differente?

Il cloruro di sodio

Prendiamo, per esempio, la Tabella 1. Gli autori scrivono che il pane prodotto con acqua di rubinetto (TWB) è stato ottenuto aggiungendo 15 g di cloruro di sodio (quello che nel linguaggio comune è il sale da cucina) a 300 mL di acqua di rubinetto. Nella stessa tabella, non c’è alcuna indicazione sull’ammontare di cloruro di sodio contenuto nei 300 mL di acqua di mare usata per fare il “pane all’acqua di mare” (SWB). Nonostante ciò, gli autori concludono che il pane SWB contiene meno sodio rispetto a quello TWB e ne suggeriscono l’uso nelle diete iposodiche.

Ma per entrare nel merito, proviamo a fare quelli che vengono indicati come “i conti della serva”.

15 g di cloruro di sodio (NaCl) contengono 5.9 g di sodio (diciamo che nel pane TWB ci sono circa 6 g di sodio). L’acqua di mare contiene in media circa 27 g kg-1 di NaCl. Dal momento che la densità media dell’acqua di mare è di circa 1.02 g mL-1 a 4 °C, ne viene che la quantità di cloruro di sodio in 300 mL di acqua di mare corrisponde a 8.3 g. Nei circa otto grammi di cloruro di sodio sono contenuti circa 3 g (3.2 g, per la precisione) di sodio.

In termini percentuali, il contenuto in cloruro sodio per ogni panello non ancora cotto si calcola come:

che per il pane TWB restituisce un contenuto di NaCl pari a 1.6% (ovvero circa 2%), mentre per il pane SWB dà un valore di 0.86% (ovvero un po’ meno dell’1%).

Se, tuttavia, teniamo conto di tutti i possibili sali presenti nell’acqua di mare (la salinità dell’acqua di mare, che NON è dovuta solo al cloruro di sodio – ricordiamo che nel linguaggio chimico, il termine “sale” si riferisce a composti ottenuti per reazione tra un acido e una base – è di circa 35 g kg-1) e che essi non vengono rimossi durante la preparazione del pane, si ottiene che il pane SWB ha un contenuto salino pari a 1.1%.

In base ai contenuti di acqua riportati dagli autori per entrambi i tipi di pane (32.4% e 32.5% per TWB e SWB, rispettivamente), se ne ricava che il contenuto salino per TWB e SWB, come riportato nella Tabella 2 dello studio che stiamo valutando criticamente, non dipende da come il pane viene preparato e cotto, bensì dalla quantità di sale che gli autori decidono scientemente di aggiungere. In altre parole, considerando che l’acqua di mare contiene meno cloruro di sodio di quanto usato per la produzione del pane con la tecnica tradizionale, ne viene che il pane SWB ha meno sodio di quello TWB. Ma gli autori non avrebbero potuto ottenere lo stesso pane tradizionale iposodico aggiungendo meno sale da cucina nel loro preparato di controllo? Per esempio, se avessero preparato un pane tradizionale usando 11 g di cloruro di sodio, invece che i 15 g descritti, avrebbero ottenuto un pane TWB identico, per quanto riguarda il contenuto sodico, a quello SWB. Perché non l’hanno fatto?

Il contenuto di sodio e gli errori analitici

Centriamo la nostra attenzione sui dettagli della Tabella 2. Qui gli autori scrivono che hanno rilevato 1057 e 642 mg di sodio nel pane TWB ed in quello SWB, rispettivamente. Tuttavia, alla luce dei “conti della serva” fatti prima, il contenuto di sodio in TWB avrebbe dovuto essere molto di più (ricordiamo che ci dovrebbero essere circa 6 g, ovvero 6000 mg, di sodio in TWB). Cosa è accaduto? Si è perso cloruro di sodio durante la cottura? Come mai? E come mai gli autori non ritengono che possa essere accaduto lo stesso per il pane SWB? La cosa più grave, tuttavia, a nostro avviso è che gli autori riportano quattro cifre significative per il contenuto di sodio in TWB e tre per quello contenuto in SWB senza alcun accenno di errore sperimentale (per il significato di cifre significative e propagazione dell’errore sperimentale si rimanda al seguente link). Senza l’indicazione dell’errore commesso durante gli esperimenti, 1057 e 642, sebbene possano apparire diversi in termini matematici, sono, in realtà, lo stesso numero.

In realtà, dobbiamo anche ammettere che se guardiamo la Tabella 3, gli autori riportano che il contenuto di sodio in SWB è pari a 6492 mg kg-1 (quattro cifre significative senza errore. Significa che 6492=6500=6400=6300 etc. etc. SIC!) mentre quello in TWB è di 10570 mg kg-1 (cinque cifre significative senza errore. Significa che 10570=10600=10500=10400 etc. etc. SIC!).

Tralasciando per il momento la scorrettezza con cui gli autori riportano i loro risultati ed assumendo che quei valori siano verosimili, ne viene che dalle analisi svolte, il pane ottenuto mediante l’uso di acqua di rubinetto contiene circa 11 g di sodio. Dal momento che i “calcoli della serva” ci dicono che il contenuto di sodio aggiunto in TWB è di circa 6 g, ne viene che circa 5 g di sodio provengono dagli altri ingredienti usati per la produzione del pane.

Andiamo a vedere qual è il contenuto di sodio in SWB. Gli autori dichiarano di aver rilevato circa 7 g di sodio (6492 mg sono appunto 6.5 g ovvero circa 7 g) a fronte dei 3 g di sodio ottenuti dai “calcoli della serva”. La differenza di 4 g è attribuibile ai materiali usati per la panificazione.

La differenza tra sodio aggiunto e sodio trovato in TWB e SWB evidenzia, semmai ce ne fosse stato bisogno, l’importanza nel riportare correttamente gli errori nella valutazione quantitativa dei parametri necessari a distinguere tra prodotti ottenuti usando materiali di partenza identici tranne per l’acqua usata per la panificazione.

Si potrebbe dire: “va bene. In un caso il materiale di partenza fornisce 5 g di sodio, nell’altro 4 g. La differenza di 1 g rientra nell’ambito di un errore sperimentale”.

In realtà non è così.

Gli autori riportano chiaramente che il sodio trovato in TWB è pari a 10570 mg kg-1, ovvero per ogni chilogrammo di pane ci sono 10.570 g di sodio. Dai calcoli sopra riportati, il contenuto di sodio aggiunto è 5.9 g. La differenza è 4.67 g. Nel caso di SWB la differenza tra sodio trovato (6.492 g) e sodio aggiunto (3.2 g) equivale a 3.292 g. Alla luce di quanto finora illustrato ne viene che a parità di materiale (ricordiamo che la differenza tra i pani prodotti è solo nella tipologia di acqua) in un caso il contributo al contenuto di sodio è più alto che nell’altro. Chissà perché in TWB, il contenuto di sodio dovuto al materiale usato per la panificazione è più alto di 1.378 g rispetto a SWB.

Le domande, a questo punto sorgono spontanee: come mai gli autori non hanno fatto una adeguata analisi degli errori sperimentali? Come mai non hanno preparato un pane completamente privo di sale da usare come controllo? Come mai non hanno preparato un pane del tipo TWB con un contenuto più basso di cloruro di sodio da usare come controllo? Come mai non hanno usato acqua di rubinetto proveniente da acquedotti diversi per produrre pane con caratteristiche differenti da confrontare con quello preparato con acqua di mare?

Ancora sull’analisi degli errori

I lettori attenti potrebbero obiettare alle cose che abbiamo scritto che non è vero che gli autori del lavoro non hanno riportato gli errori sperimentali. Lo hanno fatto. Infatti, nella Tabella 3, per esempio, è scritto che il contenuto di sodio in TWB è pari a 10570.000 ± 2.7320 mg kg-1. Insomma, per essere sicuri delle loro conclusioni e per sembrare più scientifici, gli autori hanno riportato un errore con ben quattro cifre decimali e cinque cifre in totale.

La teoria degli errori ci insegna che quando si riporta il valore numerico di una qualsiasi grandezza fisica, il numero di cifre che si possono usare non è quello che viene ottenuto dalla calcolatrice, bensì bisogna fermarsi alla prima cifra contenente l’errore. Facciamo un esempio prendendo proprio quanto scritto dagli autori dello studio sotto esame. Essi hanno scritto che il contenuto di sodio in TWB è  10570.000 ± 2.7320 mg kg-1. Stanno dicendo, in altre parole, che tutte le cifre indicate in grassetto (10570.000) sono affette da errore. In base alla teoria degli errori che tutti quelli che hanno affrontato studi scientifici conoscono (anche gli autori dello studio sotto indagine dovrebbero conoscere la teoria degli errori. Ma evidentemente non è così), il modo corretto per riportare il contenuto di sodio è: 10570 ± 3 mg kg-1. Queste considerazioni si applicano a tutte le cifre riportate in Tabella 3.

I limiti dell’analisi statistica

Gli autori hanno pensato bene di fare un’indagine statistica (Principal Component Analysis, PCA) che hanno riportato nella Figura 1 del loro studio. In questa indagine hanno rilevato che la PCA1 risponde per il 99% dei dati sperimentali.

Tutti quelli che a vario titolo si occupano di scienza ed usano la PCA per spiegare i loro dati sperimentali sanno che una PCA in cui una sola delle componenti ripsonde per il 99% dei dati non ha alcun significato fisico. Affinché una indagine PCA possa avere un significato attendibile è necessario che i dati sperimentali vengano “spalmati” tra almeno due componenti. Infine non c’è alcuna descrizione di come sia stata fatta l’analisi PCA.

Il conflitto di interessi

Last but not least, gli autori alla fine del loro studio affermano di non avere nessun conflitto di interessi. Ma come è possibile se uno di essi lavora proprio per l’azienda che fornisce l’acqua di mare e che non avrebbe alcun interesse a che vengano fuori risultati men che positivi?

Conclusioni

Ci possiamo fidare del lavoro tanto decantato e pubblicizzato dal mondo giornalistico? Alla luce di quanto detto, no. Il lavoro è stato progettato male perché mancano un bel po’ di campioni controllo, i dati sperimentali non sono attendibili e le analisi statistiche sono prive di significato fisico. Questo è uno studio che non avrebbe mai dovuto comparire in letteratura. Purtroppo non è così. I revisori non si sono accorti dei limiti anzidetti ed il lavoro oggi è pubblicato. Esso appartiene, ora, all’intera comunità scientifica che, come abbiamo fatto noi, può scaricarlo e criticarlo nel merito evidenziando la superficialità con cui questo studio è stato, purtroppo, condotto.

Fonte dell’immagine di copertina: Wikimedia Commons

Omeopatia, ultima frontiera

Eccovi i viaggi onirici degli amici dell’omeopatia nella loro missione secolare diretta all’elaborazione di nuove ipotesi ad hoc per giustificare i loro bias cognitivi, fino ad arrivare là dove la fantasia umana non è mai giunta prima.

Chi è appassionato di fantascienza capirà sicuramente la citazione di cui potete godere in questo brevissimo filmato

Richiami alle origini

Come ormai è noto a tutti, l’omeopatia nasce ufficialmente nel 1810 quando Hannheman pubblica il suo Organon of medicine. Non ho molta voglia di ripetermi perché ho già scritto in merito alla storia dell’omeopatia. Per dare una lettura veloce a ciò che ho già riportato, potete cliccare qui sotto.

L’omeopatia. Una pratica esoterica senza fondamenti scientifici

Sempre uguale a se stessa

1810-2019. Sono passati 209 anni. Durante tutto questo tempo la scienza è progredita; è nata e si è sviluppata la termodinamica con il suo famoso secondo principio; siamo arrivati sulla Luna  e finanche su Marte; è nata la meccanica quantistica che ci ha consentito di sviluppare la risonanza magnetica nucleare, la tomografia assiale computerizzata e tante altre tecniche per la diagnostica medica; stiamo progettando i computer quantistici, e parecchio altro ancora.  Nonostante tutto questo, mentre il nostro mondo è diventato un villaggio globale grazie alla rete internet sviluppata proprio grazie all’evoluzione sempre più incessante della scienza, l’omeopatia è rimasta sempre uguale a se stessa.

Fatevi un giro sui siti di medicina alternativa (quella che io chiamo medicina fuffa) e vi renderete conto che da oltre 200 anni si ripetono sempre ed esclusivamente le stesse cose. Ne volete un campionario? Eccolo.

l’omeopatia funziona
il meccanismo è ancora da scoprire
quello che non si sa oggi, verrà conosciuto domani
non c’entra nulla l’effetto placebo
funziona su piante, animali e bambini. Come lo spieghi con l’effetto placebo?
su di me funziona

e poi ancora: voi scienziati siete una setta; siete al soldo di big pharma; il riduzionismo ha fatto danni.

Insomma, ce ne è per tutti i gusti e per tutte le pazienze. Sì. Per tutte le pazienze, perché bisogna avere veramente una pazienza inesauribile per cercare di star dietro a tutte le scemenze che gli omeopati ci propinano quotidianamente. Per fortuna c’è anche chi segue la filosofia del “una risata li seppellirà” (grazie Orsetto per il buon umore mattutino)

Omeopatia, ultima frontiera

Anche la spasmodica ricerca di prove scientifiche in merito alla presunta efficacia dei rimedi ompeopatici oltre l’effetto placebo è un must.

Caduta con Whöler l’idea della vis vitalis sulla quale si basava il principio secondo cui un rimedio diventa tanto più efficace quanto più esso è diluito mediante processi che prevedevano l’uso di energiche agitazioni meccaniche, sono nate molte altre ipotesi create ad hoc per spiegare degli effetti terapeutici oltre il placebo del tutto inesistenti: si va dalla memoria dell’acqua di cui ho parlato in diversi articoli in questo blog (per esemio qui e qui), alle onde elettromagnetiche (trovate una disamina anche qui) fino ad arrivare alle più recenti trovate secondo cui i principi attivi sono comunque presenti alle dluizioni omeopatiche (se ne parla in modo divulgativo qui e qui). In altre parole, ricopiando il breve riassunto dell’articolo di giornale appena citato (qui),

“Jayesh Bellare, professore di ingegneria chimica in India, grazie al microscopio elettronico a trasmissione (TEM) ha dimostrato in maniera incontrovertibile la presenza di un rilevante numero di molecole di principio attivo in tutte le diluizioni omeopatiche. I suoi studi sono stati discussi nell’ambito del seminario internazionale tenutosi a Firenze durante l’ottavo convegno triennale della Siomi”.

Da questo si evince una cosa molto importante: i fan di questa pratica magica hanno cambiato strategia. I rimedi omeopatici funzionano perché contengono ancora molecole di principio attivo.

Fermo restando che eventuali principi attivi, la cui natura di solito è di tipo organico, non viene rilevata attraverso la microscopia elettronica (e questo perfino gli iscritti al primo anno di ogni facoltà scientifica lo sanno), ciò che il guru indiano ha rilevato sono tracce di sistemi inorganici quali oro, rame, stagno, zinco, argento e platino. Da dove escono questi metalli? Nel lavoro, che potete scaricare qui, è chiaramente indicato che gli autori hanno acquistato dei prodotti che contengono questi metalli:

The homeopathic medications used for the purpose of research were obtained commercially from authorized distributors of a leading homeopathic drug manufacturer in India (SBL) and an Indian subsidiary of a multi-national homeopathic company viz. Dr. Willmar Schwabe India Pvt. Ltd. Random batch number samples were purchased from the market and no special effort was made to get samples from the company. Since we purchased these medicines
from the market, only in certain cases were we able to obtain them from a single manufacturing batch. Also no special efforts were made to obtain the drugs from a batch

Ma allora è vero che rimane qualcosa e ciò che rimane può avere un effetto oltre il placebo!

Andiamoci piano, per favore.

Volete sapere come è fatto un vetro? Basta cliccare qui. Per comodità vi ricopio quanto scritto nel link appena citato:

Il vetro artificiale […] è un materiale inorganico solido amorfo privo di struttura cristallina, prodotto mediante rapida solidificazione di un materiale viscoso composto di sostanze naturali. E’ costituito da un vetrificante, un fondente, uno stabilizzante e vari ossidi, rispettivamente, in percentuale decrescente: silice, sotto forma di sabbia (69 – 74 %), soda, sotto forma di carbonato o solfato (12 – 13 % nei vetri per lastre, 13 – 16 % nei vetri per contenitori, 20% nei vetri artistici), calce, sotto forma di calcare (5 – 12 %), magnesio (0 – 6 %) e allumina (0 – 3 %)“.

Direte voi: ebbene? Allora hanno ragione gli omeopati. Dove sono i metalli che il Professore indiano ha trovato?

Vi ripeto: andiamoci piano, per favore.

Avete scaricato il lavoro (qui)? Avete notato che gli autori non dicono da nessuna parte in che modo erano conservati i preparati che hanno preso in considerazione per le loro analisi? Non scrivono se i preparati erano conservati in bottiglie di vetro e se il vetro era colorato oppure no.

Mi chiederete: e quindi?

beh…il vetro colorato, oltre ai sistemi elencati precedentemente, contiene altri composti il cui elenco potete trovare nella tabella qui sotto (fonte della tabella).

Come vedete i vetri colorati contengono tutti i metalli che il Professore indiano ha rilevato nelle sue analisi. Nel link seguente (qui) trovate altri dettagli che mancano nella tabella citata.

Conclusioni

In definitiva cosa ha trovato il professore indiano nei preparati che ha analizzato? Semplicemente residui provenienti dai contenitori di vetro che, molto verosimilmente, sono stati usati per la preparazione dei rimedi omeopatici presi in considerazione. Non ci dimentichiamo che i rimedi omeopatici vengono ottenuti non solo mediante diluizioni successive, ma anche attraverso succussioni, ovvero scuotimento vigoroso del contenitore che contiene la soluzione diluita n volte. Durante questo scuotimento, il vetro, specialmente se colorato, può rilasciare parte dei suoi componenti che sono stati effettivamente trovati nei rimedi analizzati. In effetti ne parlo anche nel mio libro (Frammenti di Chimica) nel capitolo dedicato all’omeopatia.

Come al solito, i fan dell’omeopatia fanno esperimenti monchi. Dimenticano sempre le prove negative che servono proprio per evitare contestazioni come quella che ho fatto io in questo breve articoletto.

Fonte dell’immagina di copertina: https://www.tuttobiciweb.it/article/75108

C’è nessunooooooo? Giocare con i numeri

Quando ero più giovane andava per la maggiore una simpatica pubblicità sulla particella di sodio. Ve la ricordate?

Era simpatica, in effetti.

Il sodio in acqua

Il sodio è un elemento del primo gruppo della tavola periodica che ha la caratteristica di reagire violentemente con l’acqua in una reazione di ossido-riduzione che porta alla formazione dello ione Na+.

Ma non è di questo che voglio parlavi.

Il sodio e la salute umana

Che lo ione sodio sia coinvolto nei problemi cardiovascolari è ben acclarato nella letteratura medica. Di conseguenza, quando un individuo è affetto da ipertensione, il medico può consigliare l’uso di acque adatte alle diete iposodiche.

In base al D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011, possono essere definite acque adatte alle diete povere di sodio tutte quelle in cui il contenuto dello ione Na+ è ≤ 20 mg L-1. L’ho scritto anche nel mio libro “Frammenti di Chimica. Come smascherare falsi miti e leggende“, dove riporto  che se anche le acque hanno un contenuto di sodio ≥ 20 mg L-1 sono comunque potabili. L’unico inconveniente è che possono avere un sapore non necessariamente gradito.

Lo stesso D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011 citato poco fa, prende in considerazione la possibilità che un’acqua potabile possa avere un elevato contenuto di ione sodio. Infatti viene riportato che quando un’acqua ha un contenuto di sodio ≥ 200 mg L-1 essa deve essere obbligatoriamente indicata come “acqua sodica”.  Come riportato nell’Enciclopedia Medica, le acque sodiche “sono indicate in stati di carenze specifiche”.

Consigli del Ministero della Salute

Se andiamo sul sito internet del Ministero della Salute (qui), leggiamo che “l’Organizzazione Mondiale della Sanità (OMS) raccomanda un consumo massimo di 5 grammi al giorno di sale, corrispondenti a circa 2 grammi al giorno di sodio“. Questo vuol dire che dobbiamo limitare il consumo di sodio nell’alimentazione giornaliera utilizzando una corretta pratica alimentare. Si parla di ione sodio, non dell’elemento metallico che dà l’esplosione a contatto con l’acqua che avete visto nel secondo filmato di quest’articolo.

In che modo tenere sotto controllo l’assunzione di ione sodio? È lo stesso Ministero della Salute a suggerircelo:

  • Leggiamo attentamente l’etichetta nutrizionale per scegliere, in ciascuna categoria, i prodotti a minore contenuto di sale e cercare i prodotti a basso contenuto di sale, cioè inferiore a 0.3 grammi per 100 g (corrispondenti a 0.12 g di sodio)
  • Riduciamo l’uso di sale aggiunto in cucina, preferendo comunque, ove necessario, minime quantità di sale iodato.
  • Limitiamo l’uso di altri condimenti contenenti sodio (dadi da brodo, maionese, salse, ecc.) e utilizziamo in alternativa spezie, erbe aromatiche, succo di limone o aceto per insaporire ed esaltare il sapore dei cibi.
  • Non portiamo in tavola sale o salse salate, in modo che non si acquisisca l’abitudine di aggiungere sale sui cibi, soprattutto tra i più giovani della famiglia.
  • Riduciamo il consumo di alimenti trasformati ricchi di sale (snack salati, patatine in sacchetto, alcuni salumi e formaggi, cibi in scatola).
  • Scoliamo e risciacquiamo verdure e legumi in scatola, prima di consumarli.
  • Evitiamo l’aggiunta di sale nelle pappe dei bambini, almeno per il primo anno di vita.
Giocare con i numeri

Ritorniamo ai consigli dell’OMS.  Dobbiamo scegliere quegli alimenti che  contengano meno di  1200 mg kg-1 di sodio.

A questo punto quelli di voi che leggono solo distrattamente mi daranno del pazzo: da dove è venuto fuori questo numero così elevato? È scritto sopra: 0.12 g di sodio per 100 g di sale corrispondono a 1200 mg di sodio ogni chilogrammo (cioè 1000 g) di sale; è molto semplice fare i calcoli per cui non offendo la vostra intelligenza proponendoveli.

In parole povere mi sono messo a giocare coi numeri. Questo vezzo di giocare coi numeri per dare l’impressione che qualcosa sia diverso da quello che effettivamente è, è tipico di quanti, per lavoro, impostano le campagne pubblicitarie di tanti prodotti alimentari come le acque destinate al consumo umano introdotte col filmato sulla particella di sodio inserito all’inizio di questo articolo.

Ne volete un esempio? Eccovi la foto dell’etichetta dell’acqua che ho preso oggi a pranzo

Figura 1. Etichetta di una nota acqua minerale. Si noti il modo in cui viene espressa la concentrazione di sodio

È perfettamente evidenziato che la quantità di sodio è < 0.0005 %. Un numero spaventosamente piccolo, vero? Uno che legge distrattamente pensa: “WOW, praticamente non c’è sodio. Deve essere particolarmente adatta per gli ipertesi”. Ma guardando con attenzione, poco più su nell’etichetta è scritto che il contenuto di sodio è 4.1 mg L-1. Alla luce del D.L. n. 176 del 8/10/2011, su G.U.  Serie Generale n. 258 del 5/11/2011 questa è un’acqua adatta per diete iposodiche.

Ma, adesso, dite la verità: 0.0005 non dà l’impressione di essere di gran lunga più piccolo di 4.1?

In realtà sono esattamente la stessa cosa. Sono state usate due unità di misura differenti per indicare lo stesso valore numerico (in realtà il valore percentuale è approssimato, ma non è importante ai fini della discussione). La legge impone di indicare il contenuto di sodio in mg L-1 ; l’azienda di imbottigliamento ha scelto di riportare, evidenziandolo a bella posta, anche il contenuto percentuale cosicché il consumatore distratto possa essere portato a pensare che la quantità di sodio sia molto più bassa di quella che effettivamente è. Si tratta di un escamotage che fa leva sulle sensazioni che nascono in noi quando leggiamo i numeri.

Conclusioni

Giocare con i numeri per suscitare sensazioni in modo da indirizzare le scelte dei consumatori è cosa molto comune. Non è una cosa grave. Non bisogna, tuttavia, farsi trarre in inganno. Le scelte, soprattutto alimentari, vanno fatte con oculatezza e sapendo ciò che si fa.

Fonte dell’immagine di copertina: https://commons.wikimedia.org/wiki/Water#/media/File:Water_Impact_0.jpg

La chimica del pulito

Vi siete mai chiesti come mai per lavare qualcosa bisogna usare il sapone e, preferibilmente, acqua calda? È tutta questione di chimica fisica.

Più volte ho scritto in merito all’acqua ed alle sue proprietà. Per esempio, qui e qui potete leggere in merito alle proprietà dei legami a idrogeno, qui in merito al ruolo dei legami a idrogeno nell’innalzamento ebullioscopico, qui trovate il significato di pH e la sua dipendenza dalla temperatura.

La chimica dei saponi

Il funzionamento dei saponi è molto semplice e lo ho già descritto qui, quando ho parlato di acqua micellare. In sintesi, un sapone è fatto da molecole anfifiliche, ovvero che hanno caratteristiche sia idrofiliche che idrofobiche. In particolare, le molecole si arrangiano in modo tale da permettere che le teste idrofiliche, rimanendo a contatto con l’acqua, isolino dall’acqua le code idrofobiche che non hanno con essa una buona affinità (Figura 1).

Figura 1. Struttura di una micella. Le teste idrofiliche formano una “pellicola” che separa le code idrofobiche dal contatto con l’acqua (Fonte)

La natura delle micelle è tale da “indebolire” i legami a idrogeno dell’acqua con la conseguenza che si riduce la tensione superficiale del liquido stesso (Figura 2).

Figura 2. La tensione superficiale permette alle zanzare di “camminare” sull’acqua (Fonte)

La riduzione della tensione superficiale consente alle molecole di acqua di penetrare meglio all’interno dei pori dei tessuti degli abiti o della pelle (in generale di tutti i sistemi porosi) così da permettere alle micelle del sapone di interagire meglio con lo sporco.

Quando ciò accade, le micelle “inglobano” lo sporco nella parte idrofobica mentre le teste polari a contatto con l’acqua fanno in modo che lo sporco venga trascinato via dall’acqua stessa (Figura 3).

Figura 3. Funzionamento dei saponi. I punti rossi sono le teste idofiliche, i bastoncini gialli sono le code idrofobiche (Fonte)
Cosa c’entra la temperatura?

Ormai anche le pietre sanno che l’acqua è una molecola polare. La polarità dell’acqua è dovuta alla distribuzione degli elettroni all’interno della stessa molecola. Essa è tale che il centro delle cariche negative è preferenzialmente localizzato sull’ossigeno, mentre quello delle cariche positive sugli atomi di idrogeno (Figura 4).

Figura 4. Distribuzione della densità elettronica nella molecola di acqua (Fonte)

Alla polarità della molecola di acqua, in genere, si attribuisce la “responsabilità” dei legami a idrogeno summenzionati. La polarità dell’acqua è legata anche a quella che si chiama costante dielettrica. La costante dielettrica è una misura della capacità delle molecole di un mezzo (in questo caso l’acqua) di allineare il proprio dipolo elettrico secondo le linee di forza di un campo elettrico applicato (Figura 5).

Figura 5. Orientamento del dipolo acqua all’interno di un campo elettrico. Il centro delle cariche positive del dipolo si orienta verso il polo negativo mentre quello delle cariche negative si orienta verso il polo positivo (Fonte)

Più elevata è la costante dielettrica, più facilmente le molecole si allineano al campo elettrico applicato.

Da un punto di vista sperimentale, la costante dielettrica dell’acqua riduce di circa 80 volte la forza con cui interagiscono gli ioni presenti in un composto chimico. È per questo motivo che i sali tendono a sciogliersi bene in acqua.

Il valore della costante dielettrica è anche una misura della tensione superficiale del sistema liquido per cui esso è misurato. Più elevato è il valore di questa costante, maggiore è la tensione superficiale del liquido.

La Figura 6 mostra come varia il valore della costante dielettrica dell’acqua al variare della temperatura. In parole povere, l’aumento della temperatura comporta una diminuzione della costante dielettrica, ovvero una diminuzione della polarità dell’acqua ed una riduzione della sua tensione superficiale.

Figura 6. Variazione della costante dielettrica relativa dell’acqua con la temperatura

Come già spiegato nel paragrafo precedente, la riduzione della tensione superficiale permette all’acqua di “interagire” meglio con la superficie dei mezzi porosi (per esempio la pelle o un tessuto di un abito).

Conclusioni

L’uso combinato dei saponi e dell’alta temperatura permette una drastica riduzione della tensione superficiale dell’acqua aumentandone la capacità pulente. L’aumento della temperatura consente anche di sterilizzare gli “oggetti” che vengono lavati. La sterilizzazione, naturalmente, ha luogo solo se i microorganismi che contaminano gli oggetti non sono termofili, ovvero in grado di resistere alle classiche temperature usate negli elettrodomestici di casa (gli organismi termofili sono in grado di resistere anche a temperature di 80-90 °C).

Simpatico, vero, l’effetto della temperatura sulle proprietà dell’acqua?

 

Per saperne di più

Fonte dell’immagine di copertina

Acqua azzurra, acqua chiara, acqua alcalina

Ebbene sì. Mi son trovato in una pizzeria del Nord Italia. Una di quelle pizzerie che vanno per la maggiore, un po’ chic (in realtà lo era, ora è una pizzeria come tante altre) e tanto bio. Non è che io mi faccia infinocchiare dalla storia del bio. So perfettamente che è solo marketing: quelli che pensano che i prodotti bio siano migliori a livello nutrizionale sono tanti ed hanno soldi; ma allora perché non dar loro quello che vogliono e far transitare i soldi dalle loro tasche a quelle dei venditori di fumo?

Ma andiamo con ordine.

Pizzeria del Nord Italia; tutto bio; famosa per fare pizze molto buone. Mi accomodo e mi viene fornito un menu. E cosa ti leggo? Guardate un po’ qui (Figura 1)

Figura 1. Dettaglio del menu in una pizzeria del Nord Italia in cui si evidenzia la possibilità di avere acqua a basso residuo fisso ed alcalina

Ora, passi per i succhi di frutta e le bevande con un po’ di succo e tanta anidride carbonica, ma come è possibile mettere tra le bibite “bio” anche l’acqua naturale e l’acqua frizzante? Esiste un’acqua non bio, forse? E la cosa più simpatica è che per attirare i gonzi (onestamente non so se quelli che lavorano lì credano veramente a queste scemenze) l’acqua naturale (che regalano loro; ma come sono generosi!) è alcalinizzata.
Sì, avete letto bene. Nelle mie peripezie ho finalmente trovato un locale che fornisce agli avventori acqua alcalinizzata. Potevo non assaggiarla? Ma certo che l’ho presa, tanto più che era regalata; non volevo offendere nessuno rifiutando un cotanto regalo.

cos’è l’acqua alcalina e ionizzata a basso residuo fisso?

Partiamo dal fatto che l’acqua chimicamente pura viene usata solo in laboratorio. È quella che noi chiamiamo acqua iperpura. Vuol dire che oltre alle molecole H2O non contiene niente altro o, se c’è qualcosa, questo non è rilevabile con le tecniche analitiche di cui disponiamo. Questa acqua da laboratorio non è potabile. E sapete perché? Perché quando la ingeriamo viene a contatto con le pareti cellulari delle nostre cellule. Nella parte interna delle cellule c’è una soluzione acquosa in cui c’è di tutto: dalle sostanze organiche disciolte ai sali minerali. La membrana cellulare quindi si trova circondata da un lato da una soluzione molto concentrata di soluti di natura differente, dall’altro da acqua che contiene soluti a concentrazioni analiticamente non rilevabili. Sapete cosa accade? Accade che l’acqua che sta fuori, quella da laboratorio, tende a penetrare attraverso la membrana cellulare per diluire la concentrazione dei soluti presenti nella soluzione all’interno della cellula. Il processo si chiama osmosi (Figura 2).

Figura 2. Rappresentazione schematica dell’osmosi (Fonte)

Il processo osmotico consiste, quindi, nella diluizione della soluzione più concentrata da parte di quella meno concentrata. Il passaggio del solvente attraverso la membrana termina quando le concentrazioni da entrambi i lati della membrana sono uguali. C’è un “ma”. La differenza di concentrazione tra la zona interna e quella esterna alla cellula, genera una differenza di potenziale osmotico così elevata che la membrana cellulare si rompe. Occorre, cioè, quella che si chiama lisi cellulare. In termini più umani come possiamo trasporre in immagini più immediate quello che ho scritto? L’acqua iperpura che abbiamo ingerito è a diluizione infinita (significa che non c’è nulla dentro, ovvero, nel linguaggio scientifico, non è possibile determinare la presenza di soluti). Questo vuol dire che il processo osmotico descritto sopra continua fino a quando anche la soluzione all’interno della cellula diventa infinitamente diluita. In altre parole, l’acqua continua a passare all’interno della cellula gonfiandola. La cellula si può gonfiare fino a un certo punto come un palloncino. Dopo un certo limite scoppia. Ora capite che se ingeriamo l’acqua iperpura che usiamo in laboratorio rischiamo la morte per lisi cellulare.
L’acqua che noi beviamo, in realtà, non è iperpura, ma contiene delle sostanze disciolte in quantità variabile in funzione della sorgente dell’acqua stessa. Il residuo fisso di cui si parla in Figura 1 non è altro che la quantità di materiale inorganico che è presente nell’acqua e che si rileva per differenza in peso dopo aver sottoposto una quantità nota di acqua ad un trattamento termico in stufa a 180 °C. Il residuo fisso non è un problema in termini di potabilità. Anzi, la sua presenza ci consente di dire che l’acqua che beviamo è sicura perché non innesca i processi descritti sopra. Ricordo che la potabilità dell’acqua non è solo chimica ma anche biologica; un’acqua chimicamente potabile potrebbe non esserlo microbiologicamente. Questo vuol dire che sto facendo un discorso non completo perché mi sto concentrando solo sulla composizione in termini chimici dell’acqua e non sulla presenza o meno di microorganismi.

Il residuo fisso è nocivo per la salute?

”Ma manco pe gniente” come direbbero in un improbabile dialetto. Tutto quello che leggete in merito ai danni sulla salute del residuo fisso sono sciocchezze messe in giro da gente che, molto probabilmente, non ha alcuna conoscenza chimica o, se ne ha, essa è abbastanza scarsa. Basta leggere, per esempio, il sito della Fondazione Veronesi o quello delle acque minerali italiane. In questo ultimo sito potete leggere che esistono delle acque con elevatissimo residuo fisso che vanno assunte sotto controllo medico. Alla luce di quanto ho spiegato sopra, si può capire perché. Se la concentrazione salina è troppo alta, la membrana cellulare si trova all’interfaccia di una soluzione poco concentrata, quella interna alla cellula, ed una molto concentrata, all’esterno della cellula. Il passaggio dell’acqua attraverso la membrana in base al meccanismo osmotico descritto, avviene dall’interno all’esterno della cellula. La conseguenza è ancora una volta la lisi cellulare ed il rischio di morte. Avete capito perché non possiamo bere l’acqua di mare? In definitiva le acque potabili che noi utilizziamo hanno un residuo fisso variabile in funzione della sorgente da cui preleviamo l’acqua. Se il residuo fisso è entro i limiti dei 1500 mg/L non ci sono problemi di sòrta (qui per i limiti del residuo fisso).

E l’acqua ionizzata alcalina?

Vi ricordate questa scena del film “Amici miei”?

Ecco. Si tratta di una supercazzola.

Uno ione è una qualsiasi specie chimica che ha una carica elettrica positiva (e si chiama catione) o negativa (e si chiama anione). Esistono anche specie chimiche che, pur essendo elettricamente neutre – ovvero non sono né cationi né anioni, sono comunque caratterizzate dalla presenza di cariche. Si tratta degli zwitterioni in cui il numero di cariche elettriche positive eguaglia quello delle cariche elettriche negative col risultato finale di non essere soggetti all’azione di un campo elettrico applicato. Quindi che vuol dire acqua ionizzata? Assolutamente nulla. A meno che questi chimici della domenica non intendano riferirsi all’equilibrio di dissociazione dell’acqua che è:

ed intendano dire che le specie a destra dell’equilibrio descritto siano acqua ionizzata. In realtà questi chimici improvvisati non sanno che  quello descritto è un processo di equilibrio che risponde a tutta una serie di parametri di cui ho già discusso tempo fa (qui). Il problema è che oggi va di moda l’acqua alcalinizzata. Banalmente è un’acqua il cui pH è > 7. Questo perché fin dalle scuole elementari viene insegnato che quando il pH < 7 l’acqua è acida, quando pH > 7 l’acqua è basica o alcalina, quando pH=7 l’acqua è neutra. Poiché ho già scritto in merito, non mi ripeto, ma vi invito ad andare a questo link per informazioni dettagliate. Basti solo ricordare che il valore del pH, tra le altre cose, dipende anche dalla temperatura e che non è possibile separare gli ioni H+ da quelli OH- come vogliono farci credere nella Figura 3.

Figura 3. Meccanismo secondo cui sarebbe possibile separare gli ioni H+ da quelli OH- (Fonte)
Perché l’acqua alcalinizzata dovrebbe far bene?

Semplicemente perché un giorno un medico, della cui professionalità dubito fortemente, fece una “scoperta” epocale: le zone limitrofe a tessuti tumorali avevano un pH acido per cui il contrasto del tumore può essere realizzato alcalinizzando il nostro organismo. Avete capito la scemenza? Un medico…cioè uno che avrebbe dovuto studiare la chimica, la biochimica e la fisiologia animale che afferma che è possibile combattere I tumori alcalinizzando i nostri tessuti. Questo bel tipo (taccio nomi e siti web perché non voglio offrire visibilità a questo pseudo scienziato) neanche sa cosa sia un sistema tampone e come lui tutti quegli altri ignoranti che propongono diete alcaline e rimedi alcalini.

Cosa c’è di vero nella relazione tumori-acidità?

Già da tempo è noto che le zone limitrofe di tessuti tumorali sono caratterizzati da un valore di pH acido (un lavoro di riferimento lo trovate qui). Il perché lo potete trovare in un lavoro del 2013 pubblicato su Cancer Cell Journal (qui). I ricercatori giapponesi, responsabili dello studio citato, hanno compreso che l’acidificazione dei tessuti tumorali è dovuta alla secrezione di acido lattico da un processo che si chiama glicolisi anaerobica, oltre che alla CO2 prodotta nella via dei pentoso fosfati. Non sto qui a descrivere i dettagli del lavoro, basti comprendere che questa secrezione non è la causa, ma la conseguenza del tumore. Tuttavia, l’acidificazione sembra inneschi un meccanismo a cascata in base al quale si velocizza la produzione di metastasi (mi scuso con i miei lettori medici se ho usato i termini sbagliati). Capite, ora, che non basta alcalinizzare il nostro organismo per curare I tumori. Prima di tutto perché i nostri tessuti sono dei veri e propri tamponi, quindi rispondono a piccole variazioni di pH in modo da ritornare alle condizioni fisiologiche; in secondo luogo perché anche se fossimo in grado di alterare il pH dei tessuti in modo da neutralizzare l’acido lattico e la CO2 responsabili del microambiente acido intorno alle cellule tumorali, non si risolverebbe la causa che ha innescato quelle alterazioni metaboliche, di cui secrezioni di acido lattico e incremento di CO2 sono la conseguenza. È come voler riparare la perdita di acqua da una tubazione eliminando l’acqua che esce, senza tappare il buco.

Conclusioni

Andate a mangiare la pizza dove vi pare. Quella che ho mangiato io era buonissima. Sappiate però che se vi propongono cose strane, vi vogliono solo prendere soldi senza alcun motivo reale se non un loro personale arricchimento economico. L’arricchimento economico nel caso del locale dove ho mangiato non è certo legato al fatto che mi hanno regalato acqua ionizzata alcalinizzata, ma alla reputazione che guadagnano se questo regalo è fatto a persone ricettive del messaggio naturistico. Queste persone arricchiscono il locale col passaparola. Non è una cosa grave, per carità, l’importante è la consapevolezza di andare in un posto in cui i prezzi sono di un certo tipo perché seguono una moda che di scientifico non ha assolutamente nulla.

Buona pizza a tutti

Fonte dell’immagine di copertina

Share