Omeopatia, scienza e linguaggio

Oggi sul nostro canale scientifico abbiamo parlato del significato delle parole prese dal linguaggio scientifico e decontestualizzate. Tra gli esempi abbiamo discusso di omeopatia,  pratica pseudoscientifica che, nonostante lo sviluppo scientifico occorso negli ultimi 300 anni, viene ancora presa in considerazione come valida alternativa alla  pratica medica che fa uso del metodo scientifico per la cura di patologie più o meno gravi. Di omeopatia ho già scritto sia nel mio libro (Frammenti di Chimica. Come smascherare falsi miti e leggende) che in una serie piuttosto cospicua di articoli in questo blog (qui).

Fonte dell’immagine di copertina: https://www.telegraph.co.uk/news/health/alternative-medicine/8844461/Parents-face-inquiry-for-treating-son-with-alternative-medicine.html

Frammenti di Chimica

Mi perdonerete se utilizzo il blog per una volta non per motivi scientifici.  Desidero ringraziare ognuno di voi che ha avuto fiducia in me ed ha deciso di prenotare una copia di “Frammenti di Chimica” che ho appena scritto e che uscirà il 3 Settembre prossimo. Ho appena visto la notizia che Cinzia Tocci ha inserito nelle news della pagina Facebook della C1V edizioni (il link è qui sotto). Che dire…non mi aspettavo questo successo. Addirittura il volume varcherà i confini nazionali per approdare in Svizzera e Germania e so che volerà anche nel Regno Unito. Non conosco tutti quelli che lo hanno prenotato o lo prenderanno nel futuro; non ho nemmeno la possibilità di incontrarvi personalmente. Ecco perché uso questo mezzo, l’unico di cui posso disporre, per ringraziarvi personalmente uno per uno. Spero vi possiate divertire nella lettura come io mi sono divertito nella scrittura.

 

Aria calda ed igiene personale

Cosa c’entra l’ aria calda in un blog di chimica?

Voglio evidenziare una notizia che ho letto nel web e che mi ha molto incuriosito. Si tratta di una recente scoperta in merito ai diffusori di aria calda usati per asciugare le mani nei bagni pubblici di tutto il mondo (la notizia la apprendo da questo sito, ma l’ho verificata e nel paragrafo “Per saperne di più” trovate il riferimento).

Un team di ricercatori della University of Connecticut School of Medicine ha pubblicato su Applied and Environmental Microbiology uno studio in cui riportano  i risultati di analisi microbiologiche condotte sulla diffusione di alcuni batteri patogeni per l’uomo campionati dai diffusori di aria calda summenzionati.

Questi ricercatori hanno deciso di identificare la natura degli eventuali batteri diffusi dal flusso di aria calda degli asciugamani elettrici presenti nei bagni pubblici di tre aree distinte del loro centro di ricerca. Hanno scoperto che la quantità di batteri risultava trascurabile quando questi diffusori non erano utilizzati, ma diventava molto importante quando essi venivano usati anche solo per pochi secondi. Ma la cosa più sorprendente è stata scoprire che i batteri diffusi non sono proprio innocui per l’uomo. Infatti questi ricercatori hanno scoperto che ben 254 diverse tipologie di batteri, tutti di origine fecale, venivano raccolte sulle piastre usate per campionare l’aria calda. La conclusione degli studiosi è stata che l’uso degli scarichi nebulizza nell’aria dei bagni pubblici tutti i microrganismi di origine fecale. Questi si depositano sugli asciugamani elettrici. Quando gli asciugamani ad aria calda vengono messi in funzione,  i microrganismi di origine fecale finiscono sulle mani di chi ha provveduto a lavarsi dopo aver espletato le sue funzioni fisiologiche. Molto meglio, quindi, fare uso dei fazzolettini di carta per asciugarsi dopo aver fatto uso dei bagni pubblici.

interessante, vero?

Per saperne di piu

Applied and Environmental Microbiology, 2018, doi: 10.1128/AEM.00044-18

Fonte dell’immagine di chiusura: http://ilsitodellerisposte.xyz/2016/11/13/qual-e-lorigine-del-fazzoletto-di-carta/

Fonte dell’immagine di copertina: Wikimedia Commons

Il decalogo del ciarlatano scientifico

Chi è il ciarlatano? Si tratta di una persona poco affidabile, di un imbonitore, di qualcuno che vende fumo. Nel mondo scientifico, il ciarlatano è colui che cerca la fama proponendo modelli che spiegano solo ciò che egli pensa di osservare, senza dare alcuna importanza a ciò che è stato fatto in precedenza. Si tratta di persone con seri problemi di personalità che tendono a paragonarsi a grandi del passato come Galilei.

Come possiamo riconoscere un ciarlatano? Alla luce dell’analisi del comportamento medio dei ciarlatani, è possibile stilare un decalogo di atteggiamenti cui il ciarlatano medio tende ad attenersi.

Il decalogo per riconoscere il ciarlatano scientifico

1. tende a isolarsi dall’ambiente scientifico;
2. per comunicare le sue scoperte non usa i canali tradizionali in genere utilizzati da tutti gli scienziati (riviste scientifiche e congressi), ma preferisce la stampa non specializzata;
3. i suoi metodi sono segreti e non vengono divulgati;
4. pretende vi sia un pregiudizio degli scienziati nei suoi confronti;
5. cita casi in cui insigni scienziati dovettero lottare contro il dogmatismo scientifico dei loro tempi;
6. denuncia l’insufficienza delle teorie scientifiche attuali;
7. i suoi resoconti sono lacunosi o inesistenti;
8. quando i suoi metodi vengono sottoposti a una valutazione scientifica, rifiuta di accettarne i risultati;
9. può essere indifferentemente incolto o fornito di titoli accademici;
10. i suoi sostenitori sono privi di competenze nel campo in cui pretende di esprimersi.

Riconoscete in uno o più punti persone che rispondono ad uno o più dei requisiti anzidetti? Io sì. Ci sono stati e ci sono molti colleghi che, pur avendo fatto un ottimo lavoro in un passato più o meno recente, sono poi passati al lato oscuro della scienza. Non mancano tra questi illustri premi Nobel che, affetti dal Nobel disease, pensano di poter dire la loro anche in campi di cui sono totalmente inesperti.

Per approfondire

Luca Simonetti – La scienza in tribunale (2018) Fandango libri
Lista di scienziati famosi affetti da Nobel disease

Fonte dell’immagine di copertina: http://www.stoccolmaaroma.it/2014/due-nobel-a-trieste/

Fonte dell’immagine in chiusura: http://goabgamersab.blogspot.it/2015/08/bien-bienvenidos-vallan-ala-pagina-web.html

Ragni e farmaci psicotropi

Correva l’anno 1948 e lo zoologo H.M. Peters conduceva delle osservazioni sulle modalità con cui i ragni tessono la loro tela. Peters aveva necessità di documentare le sue osservazioni con delle foto. Incontrò ben presto un problema. I ragnetti non sembravano molto collaborativi. Tessevano la tela nelle prime ore del mattino, preferendo operare nella totale oscurità. Questo, oltre a costringere Peters a delle levatacce, impediva l’uso delle tecniche allora in uso per scattare le foto. Nel ‘48 non esistevano le macchine fotografiche di oggi e per ottenere immagini decenti era necessario illuminare la scena. L’illuminazione, tuttavia, contrastava con le abitudini dei ragnetti. Peters decise, allora, di rivolgersi ad un suo collega farmacologo, Peter Witt, per capire se fosse possibile somministrare un qualche farmaco ai ragnetti per spostare la loro attività dalla notte fonda alle prime luci del mattino.

Witt decise di somministrare ai ragnetti diverse sostanze psicotrope e di valutarne gli effetti sul comportamento e la produttività.

La Figura 1 mostra la tela normale di un ragno a cui non era stato somministrato nulla.

Figura 1. Tela fatta da un ragno non “drogato” (Fonte)

Dopo somministrazione di mescalina, la rete appariva come in Figura 2

Figura 2. Tela ottenuta dopo somministrazione di mescalina (Fonte)

La mescalina è una sostanza che si trova in un cactus che veniva masticato  dai nativi americani per indurre allucinazioni. Queste venivano descritte come veri e propri contatti con le divinità. Evidentemente, i ragnetti, a cui era apparsa improvvisamente la loro aracno-divinità suprema,  avevano dimenticato di costruire parte della loro tela lasciando il lavoro a metà.

La dietilammide dell’acido lisergico o LSD è una sostanza allucinogena la cui struttura è simile a quella dell’acido lisergico, tossina da cui è stata sintetizzata.  Quest’ultima è contenuta nella segala cornuta. La LSD, come lo stesso acido lisergico, provoca stati di alterazione che corrispondono ad un aumento delle percezioni sensoriali e visioni distorte della realtà. Sembra che la tossina contenuta nella segala cornuta sia stata responsabile delle allucinazioni che, nel XVII secolo, furono alla base delle accuse di stregoneria e della caccia alle streghe che si realizzò a Salem. Per effetto delle “allucinazioni” indotte da LSD, la tela dei ragnetti appariva come in Figura 3.

Figura 3. Tela tessuta dopo somministrazione di LSD (Fonte)

I ragni hanno “dimenticato” di tessere gran parte dei fili interni nella struttura portante della loro tela.

Quante volte diciamo “ma che ti sei fumato?” quando vogliamo riferirci a qualcuno il cui comportamento è svagato? Questa locuzione, come è ben noto, si riferisce all’uso di marijuana che ha la proprietà di alterare le proprietà cognitive degli individui. Ebbene, a quanto pare anche i ragni vengono influenzati dagli effetti della marijuana. La Figura 4 mostra la rete fabbricata dai ragni a cui è stata somministrato questo farmaco.

Figura 4. Ragnatela fatta da ragni soggetti all’azione della marijuana (Fonte)

I caffè, si sa, contengono caffeina, un alcaloide che, se assunto in grande quantità, può portare a problemi cardiaci. Oltre agli effetti cardiaci, la caffeina stimola anche il sistema nervoso centrale tanto è vero che molte volte diciamo “no, grazie. Il caffè mi rende nervoso”. Il ragno che ha tessuto la tela mostrata in Figura 5 si deve essere innervosito non poco per aver fatto una ragnatela che ha poco in comune con quella tradizionale di Figura 1.

Figura 5. Ragnatela fatta da un ragno sottoposto all’azione della caffeina (Fonte)

La benzedrina è una molecola che appartiene alla classe delle amfetamine, farmaci che stimolano sia il sistema nervoso centrale che periferico. La sua somministrazione “induce una spiccata capacità di iniziativa, stato di eccitazione ed esaltazione; scompare qualsiasi sensazione di fatica con conseguente aumento dell’attività motoria e logorrea; si fortifica mentalmente il soggetto senza che però si potenzi il rendimento personale”. I ragnetti che hanno prodotto la tela di Figura 6 hanno lavorato con maggiore velocità rispetto al normale fabbricando, in ogni caso, una rete molto più asimmetrica rispetto a quella di Figura 1.

Figura 6. Tela ottenuta sotto l’effetto di benzedrina (Fonte)

Quando i ragnetti sono stati sottoposti all’azione di un sonnifero, la ragnatela è risultata largamente incompleta, come mostrato in Figura 7.

Figura 7. Ragnatela ottenuta sotto l’effetto di un sonnifero (Fonte)

Gli esperimenti condotti da Witt alla fine degli anni quaranta del XX secolo, sono stati riprodotti, ed i risultati confermati, dagli scienziati della NASA molto recentemente. Purtroppo per Peters, i ragnetti non hanno modificato le loro abitudini mattutine, ma solo quelle relative alla loro capacità di costruire le ragnatele.

Interessante, vero?

Fonte: Wikipedia.en
per saperne di più

ScienceAlert

Kscience

Wikipedia

Fonte dell’immagine di copertina: qui

Acrilamide. Una molecola che fa paura

L’ acrilamide è una molecola di cui di tanto in tanto si sente parlare in giro per la rete o nei giornali a tiratura nazionale soprattutto nei periodi di festa durante i quali si prospettano enormi abbuffate.

Si tratta di una molecola dalle caratteristiche genotossiche e cancerogene, ovvero in grado di modificare il DNA e provocare il cancro, ottenuta per degradazione ad alte temperature (>120° C) di alcune molecole contenute negli alimenti sottoposti a cottura.

Ma andiamo con ordine.

L’ acrilamide ha la struttura riportata in Figura 1.

Figura 1. Struttura dell’acrilamide (Fonte)

Come si evince dalla struttura, si tratta di una molecola con doppi legami coniugati in cui il gruppo funzionale che ne determina le caratteristiche chimiche è quello amidico, ovvero il sistema -NH2 legato al carbonio carbonilico.

Il meccanismo attraverso cui l’ acrilamide si forma durante la cottura degli alimenti è stato delucidato solo nel 2003 (Figura 2).

Figura 2. Il lavoro in cui è stato proposto per la prima volta il meccanismo di formazione dell’acrilamide

La Figura 3 mostra tutte le reazioni coinvolte nella formazione dell’ acrilamide.

Figura 3. Meccanismo di formazione dell’acrilamide

Un aminoacido, l’arginina, reagisce con il gruppo carbonilico di uno zucchero. Si forma una base di Schiff, responsabile dell’imbrunimento dell’alimento durante la cottura, dalla cui decarbossilazione si ottiene una base di Schiff decarbossilata che può essere soggetta a due meccanismi di decomposizione. Da un lato si può avere idrolisi con formazione di 3-propionamide dalla cui de-amminazione si ottiene l’ acrilamide; dall’altro si può avere degradazione termica con formazione di acrilamide ed una nuova base di Schiff come sottoprodotto.

La Figura 3 è presa dal lavoro pubblicato su J. Agric. Food Chem. di cui si riporta il titolo in Figura 2. La rivista è una delle più accreditate in ambito agricolo ed alimentare. Nonostante questo non posso non rilevare un errore nel meccanismo descritto. Infatti, la decarbossilazione della base di Schiff porta alla formazione di una base di Schiff decarbossilata che, secondo gli autori, è soggetta all’equilibrio descritto in Figura 4.

Figura 4. Equilibrio cui è soggetta la base di Schiff decarbossilata secondo gli autori del lavoro pubblicato su J. Agric. Food Chem.

In realtà le due strutture descritte differiscono tra loro solo per la distribuzione degli elettroni, per  cui esse sono ibridi di risonanza e non possono essere correlate dalla doppia freccia. Esse devono essere correlate da una freccia a doppia punta (↔).

Il meccanismo di azione dell’ acrilamide

Il gruppo vinilico dell’acrilamide è molto reattivo e può dar luogo alla formazione dell’epossido mostrato in Figura 5.

Figura 5. Forma epossidica dell’acrilamide (Fonte)

È proprio questa forma epossidica che, in presenza delle basi nucleotidiche del DNA, reagisce per dare i prodotti mostrati in Figura 6.

Figura 6. Prodotti delle reazioni tra le basi nucleotidiche e la forma epossidica dell’acrilamide (Fonte)

Gli addotti ottenuti per reazione della forma epossidica dell’acrilamide con le basi nucleotidiche del DNA sono responsabili delle alterazioni strutturali del DNA e della possibile insorgenza di forme tumorali.

Cosa fare

Dalla breve disamina sulla chimica dell’acrilamide appare chiaro che gli alimenti più pericolosi per la salute, quando sottoposti a cottura ad alta temperatura, sono quelli con elevato contenuto di zuccheri liberi. Tra questi le patate e tutti quelli ad elevato tenore di amido. Per evitare la formazione di acrilamide quando si utilizzano le patate, bisogna usare un po’ di accorgimenti (fonte):

  1. per la frittura si devono utilizzare oli con un punto di fumo elevato; i piu’ idonei sono l’ olio di oliva, l’ olio di arachide e il tanto bistrattato olio di palma. L’ olio di girasole e l’ olio di semi di soia sono assolutamente da evitare. Di fatto, gli oli formulati per le fritture sono costituiti in genere da una miscela di olio di arachide e olio di palma;
  2. L’ olio non deve essere riutilizzato per piu’ fritture;
    le patatine non devono diventare troppo scure; bisogna diminuire il piu’ possibile i tempi di frittura;
  3. prima di friggerle è buona norma lasciare le patate in ammollo in acqua e sale per almeno 30 minuti; in questo modo parte degli zuccheri semplici passano nell’ acqua e di conseguenza si originerà un quantitativo inferiore di acrilammide;
  4. le patate devono essere conservate al buio ma non in frigorifero, perché il freddo le rende più dolci, dunque più ricche di zuccheri liberi in grado di reagire con l’asparagina;
  5. è da evitare la germinazione perchè essa riattiva il metabolismo della patata che si arricchisce di zuccheri semplici e di amminoacidi.
i limiti suggeriti

La tabella mostrata in Figura 7 mostra i limiti massimi di acrilamide che devono essere presenti in alcuni alimenti. Per una visione migliore di questa tabella si può cliccare qui.

Figura 7. Limiti massimi ammissibili di acrilamide in alcuni alimenti
Note conclusive

Devo delle scuse a quelli dei miei lettori che non hanno una preparazione chimica. In questo lungo post ho deciso di non usare un linguaggio semplice. Ho utilizzato il linguaggio chimico che richiede delle conoscenze almeno da primo anno di università. Non c’è un motivo particolare per aver fatto questa scelta se non la mia pigrizia che in questo momento mi impedisce di concentrarmi a sufficienza per elaborare un discorso accessibile a quante più persone possibili. Spero sia chiaro che bisogna fare attenzione ai sottoprodotti che si ottengono durante la preparazione degli alimenti. Questi possono avere effetti avversi. Tuttavia, come già evidenziato in tanti altri post sul mio blog, è la dose che fa il veleno. Una alimentazione sana ed equilibrata assicura un ottimo stato di salute.

La lettura di questo articoletto molto poco divulgativo deve evidenziare che è possibile trovare errori più o meno gravi anche  in lavori pubblicati su riviste molto ben accreditate in ambito scientifico. Purtroppo tali errori sono visibili solo agli occhi dei tecnici e talvolta nemmeno ad essi visto che questi errori possono superare i filtri della peer review. Nel caso specifico della chimica dell’acrilamide gli errori cui si fa riferimento sono stati superati grazie alla prova del tempo. Dal 2003 ad oggi il meccanismo proposto per la formazione dell’acrilamide è stato più volte confermato.

Mi scuso anche per la bassa qualità delle immagini dell’articolo proposto. L’articolo è stato scritto usando un tablet e su questo mezzo le immagini appaiono di buona qualità. Sui computer, purtroppo, non è così.

Fonte dell’immagine di copertinahttp://www.mixerplanet.com/panettone-patate-pizza-cancerogeni-dipende-dal-metodo-cottura_117089/

La chimica-fisica dei camaleonti

Quando ero piccolo rimasi affascinato dalla capacità che hanno i camaleonti nel cambiare velocemente il colore della propria pelle. All’epoca mi era stato spiegato che questa caratteristica fosse legata alla necessità di mimetizzazione (il cosiddetto mimetismo criptico) per evitare gli attacchi di eventuali predatori. Come possibile spiegazione chimica mi era stata proposta la presenza di particolari cellule, indicate come cromotofori , contenenti dei pigmenti tipo melanina in grado di modulare la lunghezza d’onda della luce assorbita in funzione dei cambiamenti strutturali cui essi potevano essere sottoposti.

Nel tempo la cosa mi è passata di mente. Certo i camaleonti con la loro caratteristica erano sempre presenti nella mia memoria, ma come qualcosa di collaterale di cui si decide di approfondire la conoscenza quando se ne ha il tempo non essendo, l’erpetologia, l’oggetto principale delle mie ricerche.

Ma ecco il punto di svolta. Mi capita sotto gli occhi, durante una delle mie tante sessioni di ricerca bibliografica, un lavoro dal titolo: “Photonic crystals cause active colour change in chameleons”. Gli autori sono di un centro di ricerca Svizzero ed il lavoro è del 2015. Mi sono detto: “oilà, vuoi vedere che hanno compreso perché i camaleonti usano il cambiamento di colore come strategia di mimetizzazione?”. La mia sorpresa è stata enorme quando ho letto il lavoro che potete trovare in originale qui.

Provo a spiegare la mia sorpresa legata sia al fascino che la chimica fisica esercita sempre su di me che al fatto che ho dovuto abbandonare le mie vecchie convinzioni in merito al motivo per cui i camaleonti cambiano colore.

Infatti, il lavoro pubblicato su Nature Communications di cui ho messo il link sopra, ha evidenziato che la strategia adottata dai camaleonti non è tesa ad ingannare i predatori. Il cambiamento di colore viene messo in atto quando questi rettili sono eccitati, ovvero si trovano ad affrontare situazioni nuove ed inusuali come un combattimento, un corteggiamento, una patologia oppure un semplice cambio di ambiente. Quindi sfatiamo la leggenda metropolitana tanto in auge quando io ero piccolo: il cambiamento di colore non è una mimetismo criptico.

Ma quali sono i meccanismi alla base  del cambiamento di colore dei camaleonti?

È qui che entra in gioco la chimica-fisica.

I ricercatori svizzeri hanno evidenziato che la pelle dei camaleonti è fatta da due strati sovrapposti. Lo strato superficiale contiene dei cristalli di guanina (Figura 1)

Figura 1. Struttura della guanina, base azotata presente anche nel DNA (Fonte)

delle dimensioni di circa 127 nm ed organizzati a formare dei reticoli triangolari (Figura 2).

Figura 2. Reticoli di cristalli di guanina (Fonte)

I cristalli di guanina hanno un proprio indice di rifrazione, ovvero sono in grado di deviare la traiettoria delle onde luminose di un certo angolo (Figura 3).

Figura 3. Rifrazione della luce (Fonte)

Le onde luminose rifratte dai vari cristalli di guanina interferiscono tra loro generando i colori tipici dei camaleonti in assenza di stress.

Quando sottoposti a stress, i camaleonti riescono a modificare le distanze tra i vari cristalli di guanina modificando l’interferenza tra le varie onde rifratte e, di conseguenza, il colore della pelle.

In altre parole, la variazione delle distanze tra i cristalli di guanina è associata ad una variazione dell’indice di rifrazione della superficie della pelle dei camaleonti e, quindi, dei cambiamenti reversibili di colorazione.

Variazioni dell’indice di rifrazione possono portare ad un aumento della temperatura corporea dei camaleonti. Lo strato cutaneo sottostante, che non contiene cristalli di guanina, serve per la termoregolazione corporea conseguente alle variazioni anzidette.

Volete una spiegazione un po’ più dettagliata e scenografica di quella che ho proposto molto semplicisticamente? Potete guardare il video sottostante (in Inglese) elaborato dagli autori del lavoro di cui suggerisco la lettura.

Interessante, vero?

Fonte dell’immagine di copertina

http://www.cnascientific.com/could-this-new-chameleon-discovery-lead-to-camouflage-technology/

Chimica e musica: il segreto di Stradivari

Conoscete Stradivari? Beh, chi non conosce il famoso liutaio i cui strumenti sono entrati nella leggenda? Fino a qualche tempo fa si diceva che Stradivari avesse un segreto ben custodito che gli consentiva di ottenere strumenti musicali dalle caratteristiche eccezionali. Certamente la scelta di materiali di ottima qualità gioca un ruolo importantissimo nella definizione del suono di uno strumento, Ma come mai ancora oggi tali strumenti conservano intatte le loro caratteristiche rendendoli ineguagliabili e preziosissimi?

All’inizio di quest’anno è apparso su PNAS (rivista molto prestigiosa in ambito scientifico) un articolo in cui gli autori spiegavano che la conservazione della qualità degli strumenti di Stradivari era legata ai processi messi in atto dal liutaio  in fase di costruzione e di rifinitura di ognuno di essi. Potete trovare qui il lavoro su PNAS  e qui una breve sintesi dello stesso in italiano.

Devo aggiungere con tanto orgoglio per tutta una serie di questioni che vanno al di là della semplice appartenenza istituzionale, che è stato recentemente pubblicato su Journal of Polymer Science, Part A: Polymer Chemistry un lavoro  a primo nome di un mio carissimo amico, Alberto Spinella, in cui, per la prima volta, vengono delucidati i meccanismi alla base delle resine che Stradivari ha usato per assicurare la conservazione dei suoi famosissimi strumenti musicali. Il lavoro originale lo potete trovare a questo link. Purtroppo non esiste una sintesi in Italiano perché le riviste di divulgazione scientifica generaliste italiane non sembrano interessate a lavori pubblicati su riviste meno impattate di Nature, PNAS o Science. È un vero peccato perché si trovano lavori innovativi anche su riviste meno quotate di quelle citate ma col difetto di essere un po’ troppo tecnici per quelle summenzionate.

Ma veniamo ai dettagli.

Alberto è un ottimo NMR-ista. Come me si occupa, cioè, di risonanza magnetica nucleare. Io applico la tecnica ai comparti ambientali, Alberto la applica ai materiali.

Con la collaborazione di colleghi dell’universitã di Pavia, ha messo a punto una serie di esperimenti grazie ai quali ha potuto stabilire la composizione esatta delle  vernici usate da Stradivari costituite da olio di semi di lino e colofonia. Quest’ultima è una resina che si ottiene dalla distillazione delle trementine ed il cui componente principale è l’acido abietico (Figura 1).

Figura 1. Acido abietico, principale costituente della colofonia

Quando colofonia ed olio di semi di lino vengono mescolati in rapporti differenti e riscaldati ad una temperatura di 270  °C si realizza una reazione di esterificazione simile a quella descritta nella Figura 2.

Figura 2. Reazione di esterificazione tra un componente dell’olio di semi di lino e l’acido abietico, componente della colofonia

Tra tutte le possibili miscele, quella 25 : 75 (colofonia : olio di semi di lino) è la più simile alla vernice usata da Stradivari. Perché proprio quel rapporto e non un altro? Perché quel rapporto rappresenta il rapporto stechiometrico 1 : 1 tra i reagenti riportati in Figura 2 ed è quello che assicura la massima protezione dall’invecchiamento dei legni usati per la fabbricazione degli strumenti del liutaio Cremonese.

Quando si dice la chimica al servizio della musica. Interessante, vero?

Per saperne di più

http://biografieonline.it/biografia-antonio-stradivari

http://www.gussetviolins.com/varnish.htm

http://www.chemistryviews.org/details/ezine/2058533/Chemical_Secrets_of_the_Violin_Virtuosi__Part_1.html

http://www.chemistryviews.org/details/ezine/2067505/Chemical_Secrets_of_the_Violin_Virtuosi__Part_2.html

http://www.chemistryviews.org/details/ezine/2085627/Chemical_Secrets_of_the_Violin_Virtuosi__Part_3.html

https://phys.org/news/2009-12-secret-composition-varnish-stradivari-violins.html

Fonte dell’immagine di copertinahttps://en.wikipedia.org/wiki/Antonio_Stradivari

Biochar: ultime rivelazioni sul suo meccanismo d’azione

Chi frequenta questo blog o la mia pagina facebook sa che la mia attività di ricerca degli ultimi anni, oltre ad essere centrata sullo sviluppo della risonanza magnetica nucleare a ciclo di campo in ambito ambientale, è imperniata sulla valutazione della chimica fisica del biochar, un carbone ottenuto per degradazione termica in assenza o scarsità di ossigeno (ovvero pirolisi) di biomassa animale e vegetale. Faccio anche parte della European Biochar Certificate (EBC), una organizzazione internazionale che promuove l’uso del biochar in agricoltura e si interessa della standardizzazione delle metodiche analitiche per la valutazione delle caratteristiche chimico fisiche di tale materiale. Lo scopo ultimo è quello di suggerire una agricoltura sostenibile mediante l’uso, il riciclo e la trasformazione delle biomasse di scarto delle attività antropiche.

Alla luce di quanto appena scritto, sono felicissimo del fatto che la stampa scientifica divulgativa  stia facendo da cassa di risonanza per un lavoro apparso su Nature Communications a firma di venti persone, tra cui il sottoscritto, in cui cominciano ad essere chiariti i meccanismi molecolari attraverso cui il carbone applicato ai suoli consente l’incremento  della fertilità. Qui, qui,  qui la notizia apparsa su alcune testate di divulgazione scientifica, mentre qui trovate il link al lavoro originale pubblicato su Nature Communications.

Biochar sì, biochar no?

Sebbene sia noto che l’uso del carbone in agricoltura consenta un aumento della produzione agricola (per esempio qui e qui), ci sono ricerche che ne demonizzano l’uso invocando la sua tossicità legata ad una presunta capacità di rilasciare idrocarburi policiclici aromatici e diossine o alla sua inerzia chimica che non consentirebbe il miglioramento della fertilità dei suoli (un libro in cui c’è una visione ecologista abbastanza spinta sull’uso del biochar è questo). In realtà, come si può leggere nella review qui, la probabilità che il carbone ha di cedere all’ambiente idrocarburi policiclici aromatici e diossine è praticamente nulla a fronte di un miglioramento delle proprietà idrauliche (qui), della struttura (qui) ed, in generale, della fertilità (qui) dei suoli.

Come funziona il biochar? In che modo promuove la fertilità di un suolo?

Nel 2013, il gruppo di ricerca di cui sono responsabile ha pubblicato un lavoro in cui è stata analizzata la dinamica dell’acqua sulla superficie di un biochar (qui). Perchè tra i tanti liquidi proprio l’acqua? Semplice. Perché l’acqua è direttamente coinvolta nei processi di nutrizione vegetale e, di conseguenza, è il mezzo attraverso cui il biochar nei suoli consente la veicolazione dei nutrienti alle piante. I risultati di questo lavoro hanno evidenziato che acqua e biochar interagiscono tra loro attraverso due tipologie di legame: da un lato legami a idrogeno non convenzionali tra il piano dei sistemi aromatici del carbone e le molecole di acqua, dall’altro legami di coordinazione tra le componenti metalliche delle impurezze inorganiche e le coppie solitarie dell’acqua (Figura 1).

Figura 1. Interazioni tra biochar e acqua

La presenza di queste interazioni, associate a quelle che l’acqua forma con i soluti in essa disciolti, ha consentito di ipotizzare che la capacità che il carbone ha di assorbire e poi rilasciare gradualmente nutrienti come il nitrato sono dovute proprio alla mediazione delle molecole di acqua.  Queste, mediante il loro caotico movimento, consentono ai nutrienti di penetrare nei pori della superficie del biochar; una volta lì, il nutriente solvatato rimane “agganciato” alla superficie grazie alle interazioni anzidette (Figura 2).

Figura 2. Interazioni tra nutrienti (pallini verdi e viola) e biochar mediate da molecole di acqua

Se il biochar è invecchiato, la sua capacità assorbente migliora perché la chimica della superficie del biochar cambia nel tempo. Infatti, il numero di gruppi funzionali idrofilici (per esempio quelli contenenti ossigeno che si inserisce sulla superficie del biochar per effetto dell’ossidazione con l’atmosfera) aumenta con l’invecchiamento (Figura 3. Qui il lavoro in cui sono descritti tutti i dettagli sperimentali che hanno portato alle conclusioni brevemente descritte).

Figura 3. Interazioni tra nutrienti e biochar invecchiato

Un miglioramento delle capacità assorbitive/desorbitive del biochar si ottiene attraverso la funzionalizzazione della sua superficie mediante l’inserimento di un film organico usando un processo chimico che prende il nome di co-compostaggio. In parole povere, il carbone viene inserito assieme a biomassa vegetale fresca in un compostatore (ovvero un sistema che consente l’ottenimento del compost); una volta avviato il processo di degradazione ossidativa della miscela biochar-biomassa, si ottiene un carbone la cui superficie risulta più idrofilica di quella del carbone non co-compostato; la maggiore idrofilicità superficiale permette a questo materiale di intrappolare meglio i nutrienti e di funzionare meglio del carbone tal quale come ammendante dei suoli (qui il lavoro in cui si discute delle migliori caratteristiche qualitative del biochar co-compostato).

Perché è importante la comprensione dei meccanismi di funzionamento del carbone?

Delucidare le modalità con cui qualcosa funziona consente di indirizzare in modo opportuno la sintesi di nuove tipologie di materiali.

Nel caso specifico, si pongono le basi per la progettazione di nuovi ammendanti che permettono pratiche agricole sostenibili.

Effetto placebo: le ultime novità

Ed eccoci di nuovo qui a parlare di effetto placebo. Ne avevo già discusso qui quando avevo evidenziato l’assenza di effetto terapeutico dell’omeopatia attribuendo al solo effetto psicologico l’eventuale successo di preparati che di farmacologico non hanno assolutamente nulla.

Naturalmente ogni volta che si parla male dell’omeopatia c’è la sollevazione popolare perchè a nessuno piace ammettere di cadere preda di ciarlatani e stregoni; oggetto della sollevazione è sempre lo stesso argomento “su di me funziona”; argomento questo che ha un senso logico solo per chi non capisce nulla di scienza oppure per chi, pur avendo studiato a qualsiasi livello una qualche materia scientifica, non ha “digerito” molto bene le materie che ha studiato.

In realtà l’effetto placebo è tenuto in debito conto dalla comunità scientifica, tanto è vero che ci sono numerosissimi studi che cercano di spiegarne l’importanza nel coadiuvare l’azione di farmaci di ogni tipo.

Una disamina divulgativa sull’effetto placebo la si può trovare nel libro del Prof. Dobrilla dal titolo “Cinquemila anni di effetto placebo”.

Perché ho deciso di tornare alla carica con l’effetto placebo? Semplicemente perché mi è caduta sotto gli occhi una notizia in merito ad uno studio condotto da un team di ricercatori svizzeri sull’importanza dell’effetto placebo nella sensazione del dolore (qui).

Di solito si riporta che perchè un placebo possa avere un qualche effetto è necessario che l’individuo sia cosciente ed in stato di veglia; in più si ritiene che il soggetto debba essere sottoposto ad inganno, ovvero non deve sapere che sta assumendo il placebo.

La novità dello studio dei ricercatori svizzeri è che sembra non sia necessario l’inganno perché un rimedio placebo possa avere effetto. Infatti, questi studiosi hanno sottoposto un gruppo di volontari a shock termico, ovvero hanno analizzato la loro resistenza e tolleranza alle alte temperature con e senza l’aiuto di un farmaco antiustioni. In particolare, in una delle prove è stato chiaramente esplicitato che il farmaco era un semplice placebo.

Ebbene, a quanto pare, la tolleranza alle ustioni sembra sia stata superiore alle aspettative anche quando i soggetti sapevano di assumere un formulato senza alcuna valenza farmacologica. La domanda a questo punto è: quali sono i meccanismi alla base del fenomeno osservato?

Dal momento che quello appena descritto è il primo studio del genere, è necessario attendere ulteriori sviluppi per confermarne la validità e per approfondire i meccanismi che aumentano la tolleranza al dolore anche in condizioni in cui si è consci di star assumendo un sistema placebo.

Fonte dell’immagine di copertinahttp://www.stateofmind.it/2016/01/effetto-placebo-psicologia/

Share