Numeri, numerielli e numericchi: la qualità dei dati scientifici (Parte II)

Eravamo rimasti alle riviste predatorie (qui), quelle riviste che, dietro corrispettivo di una tassa più o meno salata, pubblicano di tutto senza una seria revisione tra pari (peer review); anzi possiamo anche dire senza alcuna revisione tra pari.

Volete un esempio?

Cliccate qui e si aprirà uno studio dal titolo “Combined Effects of Ethylacetate Extracts of Propolis Inducing Cell Death of Human Colorectal Adenocarcinoma Cells”, autori: Britta Schulz, Elizabeth Smith , Richard Funden and Ulf Moosberger; rivista: J Integr Oncol 2018, 7:2 (DOI: 10.4172/2329-6771.1000207). In questo studio (citato nel numero 1274 della rivista Internazionale) si discute dell’attività anticancerosa della propoli, ovvero di una sostanza resinosa “fabbricata” dalle api, di origine vegetale e ritenuta la panacea di ogni male. Cosa c’è di strano in questo lavoro? Semplicemente che si tratta di un lavoro inventato dai giornalisti del Süddeutsche Zeitung Magazin e del Süddeutsche Zeitung nell’ambito di una inchiesta (pubblicata appunto sul numero 1274 di Internazionale) in merito ai giornali predatori. Gli stessi giornalisti del Süddeutsche Zeitung Magazin e del Süddeutsche Zeitung, poi, affermano che, per non lasciar traccia di questa pseudo scienza, hanno richiesto il ritiro del lavoro. Ed infatti, qui trovate proprio la retraction, sebbene non sia per nulla indicato che si è trattato di un lavoro inventato.

È finita? Certo che no.

Cliccate qui. Potrete accedere al lavoro dal titolo “Aspirin plus Vitamin C Provides Better Relief than Placebo in Managing the Symptoms of the Common Cold” con autori: Aurelio Sessa and Michael Voelker; rivista: J Health Care Prev 1: 102. Cosa ha di strano questo lavoro? Semplice. Lo studio è stato condotto usando la ben nota Aspirina© C Plus contro un placebo fatto di banale acqua gassata. La prima è risultata migliore della seconda nel trattamento dei sintomi del raffreddore. Il punto è che lo studio è incompleto. Per poter essere valido oltre ogni dubbio, gli autori avrebbero dovuto usare un campione controllo a cui somministrare la normale Aspirina©, quella che in farmacia ci costa pochi euro. Perché non l’hanno fatto? Semplicemente perché avrebbero dovuto riportare che gli effetti della costosa Aspirina© C Plus sono gli stessi della più economica Aspirina©.

In questo caso si parla di dati e lavori apparsi su riviste di editori che sono inclusi nella Beall’s list of predatory journals and publishers per cui, sapendo che la serietà di tali riviste è opinabile, uno scienziato serio si guarda bene dal prenderli in considerazione se non dopo essere entrato approfonditamente nel merito di quanto lì scritto ed aver fatto un’accurata revisione post pubblicazione (ricordo che il principio fondante del metodo scientifico si basa sull’importanza di ciò che viene detto e non su quella del contenitore dove viene pubblicato un lavoro. Ne ho parlato anche qui).

Le sciocchezze nelle riviste più accredidate: il caso del gruppo editoriale Nature

Bisogna ammettere che lavori dalla dubbia o inesistente serietà possono essere pubblicati anche su riviste più accreditate. Ne volete un esempio? Eccolo (qui). Si tratta di un lavoro sull’efficacia dell’omeopatia pubblicato su Scientific Reports (una rivista del gruppo editoriale Nature) che tutti i siti pro-omeopatia e tutti i quelli che pensano che l’omeopatia abbia un’efficacia più alta del placebo si affannano a pubblicizzare come pubblicata sulla molto più quotata Nature (qui e qui, per esempio). Cosa ha di strano questo lavoro?

Lo story-telling

Faccio una premessa. Le riviste del gruppo Nature hanno una particolarità: gli articoli sono scritti come se fossero una specie di story-telling. In altre parole, si privilegia la narrazione dei risultati e della loro interpretazione rispetto alla parte tecnico-sperimentale, ovvero l’elencazione dei materiali e metodi usati per gli esperimenti. Non fraintendetemi. Non è che materiali e metodi manchino; ci sono, solo che vengono inseriti in coda all’articolo pubblicato. Questo vuol dire che chi legge spesso si sofferma solo sullo story-telling senza approfondire oltre le modalità con cui sono stati condotti gli esperimenti. Questo modo di esporre una ricerca è positivo perché permette la comprensione di un articolo scientifico ad un pubblico molto più ampio di quello che accede a riviste che non usano il medesimo approccio narrativo: i lettori non si distraggono con particolari tecnici che, molte volte, risultano ostici ed incomprensibili. Il punto è che proprio nei materiali e metodi si annidano le insidie. È dalla lettura di quei paragrafi molto tecnici che si può capire se un progetto sperimentale è stato ben congegnato.

I dettagli tecnici

Andiamo nei particolari. A pagina 9 è scritto:

Drug treatment and groups. Animals were randomly divided into five groups, each consisting of 8 rats (n = 8). Group I: Normal control group of rats were orally administered once daily with 1 ml saline for 14 days. Group II: Sham operated group of rats were treated with 1 ml saline once daily for 14 days. Group III: CCI-induced neuropathy control group of rats orally received 1 ml saline once daily for 14 days. Group IV: CCI-induced neuropathy + RT treated group of rats orally received 0.1 ml of RT (1 × 10−12 dilution) with 1 ml of distilled water once daily for 14 days. Group V: CCI-induced neuropathy + gabapentin treated group of rats orally received Gabapentin (60 mg/kg/day, p.o.) suspended in 0.5% carboxymethyl cellulose (CMC) once daily for 14 days.

Da quanto riportato, si capisce che si tratta di una sperimentazione fatta su ratti divisi in 5 gruppi ognuno contenente 8 individui. Già da questo si potrebbe argomentare che 8 individui non sono una popolazione statisticamente significativa. Per poter avere dati che abbiano un significato statistico accettabile bisogna andare su numeri più grandi. Ed in effetti gli autori sembrano essere coscienti di questo limite perché a pagina 7 (nelle conclusioni del lavoro) scrivono:

Although, the results of present study suggested the anti-neuropathic effect of RT, further pre-clinical and clinical studies are warranted to confirm these effects. Several other biochemical mechanisms may be involved in RT mediated anti-neuropathic effect. Results of present study are suggestive of the anti-nociceptive effect of RT against neuropathic pain and deserve further validation of its effectiveness in various painful conditions.

In altre parole, occorrono esperimenti più approfonditi per validare le loro conclusioni.

La sperimentazione in cieco

Ma torniamo al “Drug treatment and groups”. Riuscite a notare cosa manca? Manca la sperimentazione in cieco. In altre parole, i trattamenti somministrati ai ratti dei cinque gruppi sono stati condotti in modo tale da non evitare né l’effetto Rosenthal né l’effetto Hawthorne. Si tratta di due possibili meccanismi dell’effetto placebo che ho già avuto modo di descrivere qui (ne parlo anche nel mio libro). La conclusione è che, sebbene pubblicato su una rivista prestigiosa di una casa editrice molto antica ed altrettanto prestigiosa, il lavoro non è fatto bene e le conclusioni non consentono di dire che i rimedi ad elevata diluizione sperimentati sono più efficaci dei placebo.

Altri esempi di lavori superficiali su riviste accreditate

Una delle riviste del mio settore è Journal of Chemical Ecology. È una rivista con un impact factor di 2.419 per il 2017. Certo non è paragonabile a quello di Nature che è 42, ma stiamo parlando di riviste scientifiche di carattere differente. Nature è una rivista generalista e, per questo, letta da scienziati di ogni settore disciplinare;  Journal of Chemical Ecology è un giornale di chimica ecologica ed è destinato ad una nicchia molto piccola di scienziati, ovvero chimici che si occupano di ecologia ed ecologi. Da qui discende che il numero di citazioni che possono ricevere i lavori di Nature è di gran lunga più alto di quello che possono ricevere i lavori di Journal of Chemical Ecology destinato ad un settore enormemente più piccolo di quello di Nature (ricordo che l’impact factor è un parametro quantitativo che si calcola confrontando il numero di citazioni di tutti gli studi pubblicati in un biennio col numero totale di studi pubblicati nello stesso biennio. Per esempio, supponiamo che il numero di citazioni di tutti gli studi pubblicati su una rivista nel biennio 2015-2016 sia 13000, mentre il numero di studi pubblicati nello stesso periodo sia 5000. L’impact factor si ottiene dal rapporto 13000/5000, ovvero esso è 2.6).

Fatta questa premessa doverosa per evitare che i non addetti ai lavori si mettano a fare confronti idioti tra riviste che non possono essere confrontate tra loro (e vi assicuro che stupidi che fanno questi confronti ce ne sono), vediamo cosa mi è capitato sotto le mani.

Le cifre significative

Chi mi legge da un po’ di tempo sa che non scrivo solo per il mio blog, ma anche per altri siti come Laputa e Chimicare. In quest’ultimo ho pubblicato un breve articolo sulla matematica elementare nella chimica. Lo potete trovare qui. Non voglio tediarvi con troppi dettagli. L’articoletto sulla matematica elementare per la chimica descrive il numero esatto di cifre che si deve utilizzare per esprimere il valore numerico di una grandezza fisica e il modo con cui si esprime l’errore sperimentale:

  1. Sono cifre significative tutte le cifre non nulle presenti nel numero che esprime la misura sperimentale
  2. Lo zero compreso tra numeri non nulli è una cifra significativa
  3. Gli zeri che seguono numeri non nulli sono anch’essi cifre significative
  4. Lo zero all’inizio del numero che esprime la misura sperimentale non è una cifra significativa
  5. Tutti gli esponenziali in un numero espresso in forma scientifica non sono cifre significative
  6. Se la prima cifra non significativa è <5, il valore dell’ultima cifra significativa rimane inalterato (1.03, con 3 cifra non significativa, viene approssimato a 1.0; un errore del tipo 0.012, con 2 non significativo, viene approssimato a 0.01)
  7. Se la prima cifra non significativa è >5, il valore dell’ultima cifra significativa viene approssimato per eccesso (1.06, con 6 cifra non significativa, viene approssimato a 1.1; un errore del tipo 0.016, con 6 non significativo, viene approssimato a 0.02)
  8. Se la prima cifra non significativa è =5, il valore dell’ultima cifra significativa resta inalterato se è un numero pari o 0, viene approssimato per eccesso se è un numero dispari (1.05, con 5 non significativo, viene approssimato a 1.0; 1.25, con 5 non significativo, viene approssimato a 1.2; 1.15, con 5 non significativo, viene approssimato a 1.2; un errore del tipo: 0.015, con 5 non significativo, si approssima a 0.02; un errore del tipo: 0.025, con 5 non significativo, diventa: 0.02)
Gli errori in Journal of Chemical Ecology

Ed eccoci arrivati al dunque. Nel 2012 appare su J Chem Ecol un articolo dal titolo “Herbivore-Mediated Effects of Glucosinolates on Different Natural Enemies of a Specialist Aphid” (qui). Non voglio porre l’attenzione sulla natura del lavoro, ma sul modo con cui gli autori (un insieme di entomologi, agronomi ed ecologi) hanno espresso i loro dati sperimentali. La Figura 1 riporta uno stralcio della Tabella 1 del lavoro citato.

Figura 1. Stralcio della Tabella 1 di un lavoro pubblicato su J Chem Ecol

In giallo ho evidenziato gli errori commessi dagli autori nel riportare il numero di cifre significative e i relativi errori sperimentali per le concentrazioni delle molecole indicate nella prima colonna a sinistra della tabella. Se aprite il lavoro (qui) potete divertirvi voi stessi a trovare gli errori commessi dagli autori nella restante parte della tabella, alla luce delle indicazioni che ho dato poco più sopra. Come possiamo ritenere affidabili le conclusioni di un lavoro scientifico se chi l’ha scritto si macchia di superficialità nell’esprimere i valori numerici delle grandezze che misura? Perché dovrei ritenere superficiale una parte del lavoro e non superficiale un’altra parte del lavoro? Devo dire che quando opero come revisore nei processi di peer review, gli errori che ho appena mostrato sono quelli che mi fanno rifiutare i lavori per la pubblicazione: se io insegno e pretendo dai miei studenti il rigore scientifico che si palesa anche, ma non solo, nella correttezza con cui si effettuano le misure e si riportano i dati sperimentali, pretendo analoga coerenza sia da me che dai miei colleghi che, come professionisti, siamo chiamati ad essere di esempio per le generazioni che ci sostituiranno nel nostro ruolo e nel mondo della ricerca scientifica.

Come è possibile che certi lavori arrivino ad essere pubblicati?

La risposta alla domanda è che anche noi scienziati siamo umani. Prima di tutto non siamo esperti di tutto lo scibile. Se un lavoro che deve essere sottoposto alla revisione tra pari arriva nelle mani di un non esperto del settore, la correttezza professionale dovrebbe imporre di non accettare l’incarico per la revisione. Ma non sempre accade. Anzi, più spesso di quanto si creda, accade che i lavori vengano revisionati da non esperti che non si dichiarano tali o addirittura da amici degli autori che chiudono entrambi gli occhi di fronte ad errori palesi. Quando ciò accade, un lavoro riesce ad essere pubblicato anche su una rivista prestigiosa semplicemente perché chi doveva accorgersi degli svarioni, o ha scientemente evitato le critiche oppure non aveva gli strumenti adatti per poterlo fare. A questo punto la domanda che una persona comune che non si occupa di scienza si può fare è: ma come faccio a fidarmi della letteratura scientifica? Se non si è preparati in modo adeguato, non ci sono molte possibilità per riconoscere un lavoro fatto bene, da uno pasticciato. L’unica arma che un lettore comune ha per distinguere la buona scienza da una scienza fatta male (o pseudo scienza) è il fattore tempo. Quando un lavoro viene pubblicato non passa inosservato. C’è sempre uno scienziato in un qualche laboratorio in giro per il mondo che si appropria dei dati pubblicati e cerca di riprodurli. Se nonostante tutti i tentativi non ci riesce, pubblica una nota in cui evidenzia l’inconsistenza dei dati riportati in letteratura. La confutazione/approvazione di un dato sperimentale pubblicato richiede tanto tempo e tanta pazienza, ma alla fine il protocollo che noi indichiamo come “metodo scientifico” consente di fare una cernita tra dati seri e dati meno seri: è capitato con i lavori di Wakefield, Schoen e tanti altri di cui ho già parlato qui.

Adesso, però, vi ho annoiato anche troppo. Il reportage continua la prossima settimana.

Fonte dell’immagine di copertina: qui

Numeri, numerielli e numericchi: la qualità dei dati scientifici (Parte I)

Internet è alla portata di tutti. Basta pagare un abbonamento flat ad una qualsiasi delle innumerevoli aziende telefoniche del nostro paese per avere un accesso illimitato a siti di ogni tipo, inclusi quelli di carattere scientifico. Naturalmente, chi non fa parte di un ente (pubblico o privato) che ha accesso alle banche dati scientifiche non può leggere e scaricare lavori che non sono “open access”.

“Open access”. Oggi sembra essere la moda. Tante istituzioni, anche a livello trans nazionale, invitano i ricercatori a pubblicare su riviste accessibili a tutti. Devo dire che la questione delle pubblicazioni scientifiche accessibili a tutti è un argomento spinoso. In linea di principio io sono molto d’accordo.

Sistema open access contro sistema chiuso

Nel business editoriale scientifico chiuso gli editori sono gli unici ad attuare una politica win-win-win-win. Win-1 perché fanno pagare il download di un singolo articolo da pochi dollari a qualche centinaio (dipende dall’importanza della rivista e solo nel caso in cui non sia stato pagato un abbonamento). Tuttavia, a livello istituzionale, impongono agli enti di ricerca e/o di didattica il pagamento di un abbonamento che non è certo economico. I dipendenti di quella istituzione che paga l’abbonamento (annuale) possono accedere a tutti i lavori scientifici che desiderano per le riviste per cui è stato pagato l’abbonamento.  Win-2 perché, affinchè  possa essere pubblicato, un lavoro deve essere sottoposto a revisione tra pari. Gli editor-in-chief di una rivista chiedono ad esperti di settore di fare la revisione dei lavori. Il punto è che chiedono ai revisori un surplus di lavoro gratuito (per quanto ne so, una sola rivista in campo medico dà un gettone per il lavoro di revisione).  Ed arriviamo, adesso, a win-3. I lavori che vengono inviati alle riviste scientifiche sono finanziati dalle stesse istituzioni che pagano l’abbonamento alle riviste (oltre a pagare lo stipendio ai ricercatori perché facciano il loro lavoro di ricerca). Possiamo chiudere il cerchio con win-4: le riviste vendono un prodotto che non comprano e, di conseguenza, per il quale non pagano. Insomma, per come la vedo io, il sistema closed usato fino ad ora non solo non consente la libera circolazione delle informazioni scientifiche ma è abbastanza oneroso per le università/enti di ricerca che, pur non avendo grosse disponibilità economiche, si trovano a dover pagare la ricerca (con opportuni finanziamenti), i ricercatori (sia per il lavoro che devono svolgere sia per le revisioni editoriali richieste da terzi), l’abbonamento alle riviste per poter ottenere i lavori pubblicati dai propri ricercatori.

Meglio l’open access, allora? Beh, in qualche modo sì. In questo caso, il singolo ricercatore o, meglio ancora, l’istituzione di appartenenza paga una cifra per la pubblicazione del lavoro di ricerca che viene, però, reso accessibile a tutti. Insomma, a pagare non è chi necessita della lettura di un rapporto scientifico, ma paga chi pubblica, sempre che il lavoro venga accettato per la pubblicazione. Il costo dei lavori è molto variabile: può andare dalle poche decine di euro fino alle migliaia. Quindi, occorre reperire fondi da destinare alla pubblicazione. Ma del resto è così anche nel sistema chiuso: se non ci sono fondi disponibili, non posso comprare gli articoli che mi servono per aggiornarmi.

E poi ci sono le riviste chiuse che chiedono un contributo per la stampa a colori, ma questo è altro e per le finalità del discorso non è molto importante parlarne.

Vantaggi e svantaggi

Se sono un ricercatore che studia un ambito scientifico molto ristretto per cui è difficile reperire fondi, mi conviene il sistema chiuso. Faccio il mio lavoro col minimo di soldi che riesco a trovare, scrivo il mio rapporto scientifico e invio il lavoro ad una delle riviste che non mi chiedono di pagare per la pubblicazione. Pagherà chi ha bisogno di sapere cosa ho fatto, fermo restando che, come autore, posso inviare gratuitamente il lavoro pubblicato a chiunque me ne faccia richiesta.

Se sono un ricercatore che è in grado di attrarre molti fondi, mi conviene pubblicare sulle riviste open. Parte dei miei fondi sono, in ogni caso, destinati alla mia università per spese di gestione; mettiamo tra queste anche il libero accesso alle informazioni scientifiche. Questo implica una maggiore visibilità ed una maggiore penetrazione delle mie ricerche nel mondo scientifico, anche quello non direttamente collegato al mio specifico settore disciplinare.

Maggiore visibilità per il ricercatore significa anche maggiore visibilità per l’istituzione di appartenenza che, quindi, ha tutto l’interesse a privilegiare l’open access invece che la pubblicazione chiusa. Ed infatti, attualmente molte, se non tutte, le università in Italia chiedono che i lavori scientifici vengano pubblicati anche sulle riviste open access.

Il problema è che quando il mercato diventa libero si innesca la concorrenza ed è possibile, anzi certo, che si possa incorrere in delle truffe.

La truffa dell’open access

Posso fondare una rivista (per esempio Journal of Scientific Folly-news) e chiedere un obolo di, mettiamo, 20 euro a chiunque mi invii un articolo che verrà accettato per la pubblicazione. Mi conviene accettare per la pubblicazione 20 articoli al giorno in modo tale che in un mese io possa fare un introito di 12000 € di cui solo una piccola parte destinata a pagare lo stipendio di chi si occupa di impaginare e gestire il sito web. Se poi sono ingordo, invece di accettare 20 articoli al giorno ne posso accettare un po’ di più in modo da migliorare i margini di guadagno. Però…se un articolo costa solo 20 €, faccio la figura dell’accattone. Meglio imporre un obolo di 50 € (tanto vuoi che un ricercatore non possa pagare anche di tasca sua una cifra così bassa?) e far finta di accettare solo il 20 % di tutti gli articoli inviati (tanto chi mi controlla?). Ed ecco che cominciano i problemi. Se voglio accettare più lavori possibili devo essere di bocca buona: devo fare in modo che la peer review sia più labile possibile o del tutto inesistente. Meglio se inesistente: magari io stesso, come editor, posso far finta di leggere il lavoro e imporre delle banali revisioni agli autori.

I predatory jounals

Pensate che sia impossibile? Ebbene, vi sbagliate. C’è stato qualcuno che si è preso la briga di studiare il comportamento degli editori in ambito scientifico ed ha fatto un elenco di tutte quelle riviste che pubblicano qualsiasi cosa, indipendentemente dalla qualità dei dati sperimentali. Si chiama Beall’s list of predatory journals and editors (Figura 1)Beall è il nome di chi ha avuto la pazienza di raccogliere tutte le informazioni che potete leggere qui.

Figura 1. La Beall’s list of predatory journals

Mi chiederete: possibile che ci siano giornali che, pur dichiarando di essere peer review, non attuano alcuna politica di valutazione della qualità dei dati e per la verifica della congruenza dei dati sperimentali con le ipotesi proposte?

Beh…date un’occhiata alla Figura 2.

Figura 2. Esempio di articolo apparso in letteratura. Evidentemente non è stato utilizzato alcun processo di selezione

Di questo ho già parlato. Se volete leggere la storia (da cui si riprende anche in parte ciò che è scriutto in questo primo articolo di un reportage più ampio) basta cliccare qui.

Per ora mi fermo. Nelle prossime puntate del reportage andrò a valutare la qualità dei dati pubblicati. Stay Tuned

Fonte dell’immagine di copertinahttps://www.corriere.it/spettacoli/16_febbraio_25/storie-scienza-adbb2aec-dba3-11e5-b9ca-09e1837d908b.shtml

Avviso ai naviganti

Ancora un post di servizio. Un ”avviso ai naviganti” per informare tutti coloro che hanno ordinato “Frammenti di Chimica” che sono iniziate le spedizioni. La settimana prossima (probabilmente tra lunedì e martedì) comincerete a ricevere il libro. Chi abita sulle isole (incluso me) dovranno aspettare un giorno in più, purtroppo. Cinzia Tocci, editor-in-chief della C1V edizioni, ha appena informato dalla pagina Facebook della C1V della partenza dei primi corrieri

 

Grazie ancora una volta a tutti voi che avete avuto fiducia in me.

 

Irpinia 1980 – Genova 2018

Impazzano in questi giorni polemiche di ogni tipo in merito al crollo del ponte Morandi di Genova. Non entro nel merito delle questioni politiche. Non è questo il fine di questa pagina. Voglio solo rendere omaggio alla popolazione di Genova attraverso il racconto di un adolescente che ha vissuto le ore terribili del terremoto dell’Irpinia nel 1980. Tragedia diversa, è vero, ma, per molti versi, simile a ciò che è accaduto a Genova per quanto riguarda i drammi personali e le polemiche che seguono. Vi siete mai chiesti cosa prova un ragazzino che ha vissuto un dramma di questo tipo? Che magari ha subito una e perdita? Ecco qui una cronaca di una tragedia vista con gli occhi di un adolescente

_______________________________________________

23 Novembre 1980.
Paura e rabbia. Sembra morta anche la speranza. Paura: siamo davanti ad un fenomeno naturale, il terremoto, di cui non si conosce nulla e da cui non ci si può difendere. Rabbia: dalle prime convulse notizie si intravede la grande entità della tragedia e le responsabilità, dirette ed indirette, di chi ha da sempre dimenticato il Sud; di chi pensava che Avellino fosse un paese in provincia di Napoli.
Alba del 24 Novembre.
Le telecamere delle reti nazionali portano nelle nostre case, fortunatamente solo sfiorate dalla distruzione, immagini di paesi totalmente rasi al suolo, di persone che non hanno nemmeno la forza di piangere, di soccorsi che arrivano, quando arrivano, tardi e male.
Add’à passà a nuttata.
Sono passati anni, trentacinque, e si chiamano Polesine, Vajont, Firenze, Belice, Friuli, Valnerina, Lucania ed Irpinia.
La nostra situazione, quella dei paesi solamente sfiorati dall’onda sismica, è schizofrenica: siamo in piena emergenza per le scosse di assestamento che si susseguono a breve distanza temporale le une dalle altre; sentiamo, sotto la spinta emozionale delle notizie che ci arrivano, di non poter restare con le mani in mano; in qualche modo dobbiamo aiutare i nostri fratelli irpini e lucani. Ed eccoci qui, noi giovani del paese: ci ritroviamo, senza coordinamento e senza alcun segnale preciso, a raccogliere cibo ed indumenti; alcuni, quelli più grandi, sono partiti per il centro del “cratere”.
Nei primi giorni dalla prima grande scossa, al terremoto si oppone un contro-terremoto fatto di solidarietà. Viene soprattutto dal Nord. Un Nord che, probabilmente, è travolto da uno storico senso di colpa verso il Sud.
Tutte le sensazioni provate in quei giorni, di paura, di angoscia, di solidarietà, di immagini dirette e testimonianze indirette si riassumono nel pianto che troppe volte ha risolto le mie nottate passate all’addiaccio. Un pianto indefinibile che assomma in sé non tanto la paura della morte e l’angoscia di un futuro incerto, quanto la gioia – ebbene sì, proprio la gioia – che finalmente gli esseri umani fanno qualcosa di spontaneo, non dettato dall’interesse egoistico, che finalmente i “terroni” vengono aiutati e non sfruttati dai fratelli del Nord.
Tutto ciò sembra una favola. Una favola nata da una tragedia, quindi una favola assurda. Una favola che non può resistere a lungo. Ed infatti viene il tempo delle incomprensioni e delle polemiche; noi tutti paghiamo il triste tributo che ci siamo procurati da soli: lotta tra i partiti per il potere, crisi di governo, riforme rimaste lettera morta, leggi anacronistiche, ignoranza, ingiustizia, corruzione, confusione, terrorismo, camorra, droga, assenteismo, disoccupazione, scandali.
Troppe volte la solidarietà arriva agli incroci sbagliati e non si incontra con un’intelligenza dei soccorsi. Soldi sviati, pratiche chiuse nei cassetti sbagliati, tir fermi su strade chiuse col loro carico inutile.
Ed allora? È inutile riportare le cifre che la solidarietà europea e del Nord Italia ha convogliato verso il Sud. È noto che nessun paese al mondo ha lesinato aiuti materiali per far fronte alla prima emergenza; come è arcinoto che enti di molti paesi stanno ancora lavorando nei luoghi del “cratere”, che molte amministrazioni del Nord sono ancora in prima linea nella delicata fase della ricostruzione e della ripresa economica dei paesi terremotati: il comune di Firenze sta operando a Sant’Angelo dei Lombardi nel settore dei beni culturali; a Solofra, la provincia di Brescia sta operando per la realizzazione di un migliaio di alloggi nella “167”; a San Michele di Serino stanno ancora operando I volontari della città e della provincia di Cremona; a Montoro Superiore i tecnici della provincia di Varese stanno lavorando per lo sviluppo della cooperazione; e si potrebbe continuare all’infinito.
Ciò che è da sottolineare è lo scontro culturale tra i soccorritori del Nord e dei paesi europei, soprattutto giovani, e le popolazioni locali. Più volte i primi hanno espresso meraviglia per la passività degli irpini, per il loro stare a guardare mentre essi scavano tra le macerie, abbattono mura pericolanti e cercano di ricostruire un minimo di vita civile. Questi giovani sono venuti al Sud conoscendo solo qualche luogo di villeggiatura, credendo che il modo di vita delle genti irpine fosse quello letto o visto in libri e film di successo. Invece si sono trovati davanti ad una realtà ben diversa. Non capiscono come quella gente sia così abbandonata spiritualmente, come e perché si rifiutino di andare nelle case sulla costa. Si aspettavano una terra più aiutabile, più disponibile, meno drammatica, non così complicata dalle contraddizioni e dalle lacerazioni provocate dal cattivo governo di secoli.
Ed allora? Allora, sotto tutti i punti di vista il terremoto del 23 Novembre 1980 deve essere inteso come una forza eversiva, come una grande calamità che deve, però, segnare un’inversione di tendenza: basta con le discussioni sui fenomeni di accaparramento e di piccola speculazione che pure ci sono, inevitabilmente, in una società disgregata. Il fine ultimo, quello vero, deve essere un altro: individuare le linee di una politica di autentico rinnovamento che non riguarda solo il Sud, ma l’intera Italia. Perché ci si dimentica troppo spesso che il Mezzogiorno, così com’è, con le sue contraddizioni ed I suoi vittimismi, non è una parte della lontana Papuasia, ma è figlio di questo Paese, figlio legittimo della madre Italia.
_______________________________________________

Ebbene sì. L’adolescente che ha scritto queste cose ero io. Non me lo ricordavo. Mi era completamente passato di mente. Devo ringraziare mio fratello che, rovistando nelle vecchie carte di famiglia, ha trovato, probabilmente nascosta tra le carte di mio padre, questa vecchia digressione che fu all’epoca un “tema” non mi ricordo più se di terza media o di quarta/quinta ginnasio. Nel rileggere ciò che fu scritto ormai quasi quaranta anni fa, non ho potuto che fare un parallelismo con quanto accade in queste ore a Genova. Mi sono messo nei panni di un giovane genovese e ho pensato che se sostituisco “terremoto” con “crollo”, le sensazioni di rabbia ed impotenza, di angoscia e di sollievo sono esattamente le stesse. A distanza di tempo e nonostante la politica, l’Irpinia, bene o male, si è ripresa. Sono sicuro che Genova sarà in grado di fare di più e meglio.
Auguri a Genova

Per saperne di più: http://www.ansa.it/sito/notizie/cronaca/2015/11/19/terremoto-in-irpinia-quel-23-novembre-di-35-anni-fa-_ee36c97a-de8f-47ee-86e6-f6547f8ac530.html

Fonte dell’immagine di copertina: https://vivicentro.it/nazionale-24h/cronaca/crollo-ponte-morandi-genova-video-dei-primi-soccorsi-si-temono-decine-vittime/

Acqua e sua qualità: per cosa dobbiamo preoccuparci?

Estate. Tempo di caldo. In città c’è una cappa fatta di smog che aumenta la sensazione di disagio per il caldo torrido. Cosa c’è di meglio che una bella bevuta di acqua fresca per reidratarci?

Qui a Palermo, ma in genere in gran parte del paese, si consuma tantissima acqua imbottigliata. Ce n’è per tutti i gusti. Acqua alcalina (ne ho già parlato qui), acqua ricca di ossigeno (ne ho parlato qui), acqua a basso contenuto di residuo fisso (ne ho scritto qui), acqua a basso contenuto di sodio (non ne ho ancora scritto, ma anche questa è una bufala commerciale), per non parlare dell’acqua contenente arsenico, nitrati e fluoruri che viene considerata tossica per cui meglio starne lontani ed impiantare inchieste giornalistiche prive di ogni senso.

La normativa sull’acqua

Avete mai letto l’etichetta di un’acqua in bottiglia? Non è che i gestori dell’imbottigliamento inseriscano le analisi delle acque che vendono per amore della chiarezza e dell’umanità. Essi sono costretti a farlo da tutta una normativa che, nel tempo, è diventata sempre più stringente e ha come punto focale la tutela della salute pubblica. Siete interessati a sapere quali sono le norme in merito? Eccone un elenco:

Per le acque destinate al consumo umano

D.L. n. 31 del 02 febbraio 2001 (Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano) pubblicato sulla G.U. Serie Generale n. 52 del 03 Marzo 2001

D.M. n. 174 del 06 aprile 2004 (Regolamento concernente i materiali e gli oggetti che possono essere utilizzati negli impianti fissi di captazione, trattamento, adduzione e distribuzione delle acque destinate al consumo umano) pubblicato sulla G.U. Serie Generale n. 166 del 17 Luglio 2004.

Per le acque minerali, ovvero quelle in bottiglia che troviamo al supermercato

D.L. n. 105 del 25 Gennaio 1992 (Attuazione della direttiva 80/777/CEE relativa alla utilizzazione e alla commercializzazione delle acque minerali naturali) pubblicato sulla G.U. n. 39 del 17 Febbraio 1992 e sue successive modifiche ed integrazioni

D.L. n. 239 del 4 Agosto 1999 (Disciplina delle acque di sorgente e modificazioni al decreto legislativo 25 gennaio 1992, n. 105, concernente le acque minerali naturali, in attuazione della direttiva 96/70/CE) pubblicato sulla G.U. n. 231 del 1 Ottobre 1999

D.M. del 11 settembre 2003 (Attuazione della direttiva 2003/40/CE della Commissione nella parte relativa all’etichettatura delle acque minerali e delle acque di sorgente) pubblicato sulla G.U. n. 229 del 2 Ottobre 2003

D.M. del 29 dicembre 2003 (Attuazione della direttiva n. 2003/40/CE della Commissione nella parte relativa ai criteri dei valutazione delle caratteristiche delle acque minerali naturali di cui al decreto ministeriale 12 novembre 1992, n. 542, e successive modificazioni, nonché alle condizioni di utilizzazione dei trattamenti delle acque minerali naturali e delle acque di sorgente) pubblicato nella G.U. n. 302 del 31 Dicembre 2003

D.M. del 24 marzo 2005 (Gamme delle acque minerali naturali e delle acque di sorgente destinate alla somministrazione) pubblicato nella G.U. n. 78 del 5 Aprile 2005

D.L. n. 176 del 8 Ottobre 2011 (Attuazione della direttiva 2009/54/CE, sull’utilizzazione e la commercializzazione delle acque minerali naturali) pubblicata sulla G.U. Serie Generale n. 258 del 05 Novembre 2011

D.M. del 10 febbraio 2015 (Criteri di valutazione delle caratteristiche delle acque minerali naturali) pubblicato sulla G.U. n. 50 del 2-3-2015

I limiti di legge

Tutta questa normativa impone l’obbligo di chiarezza stabilendo anche ciò che deve essere riportato sulle etichette. Inoltre impone anche dei limiti in merito alle sostanze che possono essere contenute nelle acque destinate al consumo umano ed imbottigliate. Volete un esempio? Leggete la tabella della Figura 1 qui sotto.

Figura 1. Alcuni dei parametri i cui limiti sono riportati nella normativa vigente in merito alla qualità delle acque destinate al consumo umano ed imbottigliate
Alluminio, Arsenico, Fluoro, Nitrato

Se non siete chimici, biochimici, biologi o medici, la lettura della Tabella di Figura 1 può fare impressione.

Ma come? La legge permette che ci siano sostanze tossiche come alluminio, arsenico, fluoro e nitrato? Ma lo sanno tutti (tipico dei bufalari) che sono sostanze che dovrebbero essere assenti dalle acque.

Chi fa queste affermazioni non sa che “è la dose che fa il veleno”.  Il nostro organismo è in grado di “sopportare” una certa quantità di sostanza ritenuta tossica senza alcuna conseguenza. È solo quando l’ammontare di una certa sostanza supera un dato limite che sopravvengono i problemi. Nella fattispecie i limiti riportati in tabella sono ben al di sotto di quelli pericolosi.

Cosa ci fanno sostanze potenzialmente tossiche nelle acque che compriamo?

Per rispondere alla domanda occorre sapere che l’acqua è uno dei quattro comparti ambientali con cui noi umani interagiamo. Gli altri sono suolo, sedimenti ed atmosfera.

L’acqua come comparto ambientale non è un sistema isolato, ma interagisce con tutti gli altri.

Figura 2. Ciclo idrologico (Fonte)

La Figura 2 mostra come l’acqua a livello globale interagisca con suolo, sedimenti ed atmosfera.

Il processo di evapotraspirazione porta l’acqua dalle riserve oceaniche, laghi, fiumi, mari e suolo verso l’atmosfera. Durante questo processo l’acqua perde il suo contenuto disciolto, disperso e sospeso.

Una volta in atmosfera, l’acqua gas (che per convenzione noi indichiamo come vapore) si muove per effetto delle correnti aeree. Quando si realizzano condizioni di temperatura e pressione adatti, le molecole di acqua vapore condensano a formare delle goccioline che diventano progressivamente sempre più grandi. Quando la forza di gravità prevale sulle forze dispersive (quelle che tengono disperse in atmosfera le microgocce di acqua), l’acqua ritorna sulla superficie terrestre sotto forma di pioggia.

Durante il processo di condensazione, l’acqua discioglie i gas dispersi in atmosfera come per esempio anidride carbonica, ossigeno, azoto, ossidi di azoto, ossidi di zolfo e così via di seguito. Molti di questi gas sono in atmosfera sia a causa dell’attività tellurica (per esempio eruzioni vulcaniche) che dell’attività antropica (per esempio gas di scarico delle automobili, residui della lavorazione industriale etc.).

Man mano che le gocce di acqua crescono, aumentano di peso e tendono, come già scritto, ad essere soggette alla forza di gravità. Nel loro movimento verso la superficie terrestre, le molecole di acqua condensata si arricchiscono di pulviscolo, batteri e spore di microorganismi. Questo vuol dire che quando arriva sulla superficie terrestre, l’acqua piovana non è pura nel senso chimico. Contiene già sostanze disciolte, in dispersione ed in sospensione.

Una volta al suolo, l’acqua si infiltra e/o scivola scorrendo verso le falde e le altre riserve di acqua. Durante il processo fisico di infiltrazione e/o scivolamento, l’acqua interagisce con tutto ciò con cui viene a contatto sia con meccanismi fisici che con meccanismi chimici.

Da un punto di vista fisico, lo “sfregamento” del liquido sulle rocce determina lo “sfaldamento” delle stesse e la formazione di particolato solido che entra in dispersione/sospensione nelle acque.

Da un punto di vista chimico possono avvenire tante reazioni. Per esempio, l’anidride carbonica disciolta durante il processo di condensazione atmosferica contribuisce ad aumentare la velocità dei processi di dissoluzione di rocce che contengono carbonati di calcio e magnesio facendo, così, in modo che l’acqua si arricchisca di questi composti. L’ossigeno disciolto, invece, contribuisce a reazioni di ossido-riduzione grazie alle quali l’acqua si arricchisce di solfati e nitrati.

Sistemi chimici come alluminio, arsenico e fluoro sono componenti di molte rocce per cui essi possono finire in acqua grazie ai processi chimico-fisici appena descritti e dovuti all’interazione tra l’acqua e la componente solida della superficie terrestre.

Conclusioni

Non ci dobbiamo preoccupare quando sulle etichette delle acque che compriamo al supermercato leggiamo della presenza di sostanze a cui il senso comune attribuisce una qualità negativa. Come esseri viventi noi siamo “nati” grazie all’acqua presente sul pianeta. A questo punto è chiaro che il termine “acqua” è molto più complesso del semplice “H2O” che impariamo fin dalle scuole medie. Esso, infatti, non si riferisce solo alle molecole di acqua in senso proprio, ma a tutto ciò che il sistema acqua, come sistema chimico complesso, contiene. Noi esseri viventi siamo adattati a resistere a tutto ciò che l’acqua contiene entro certi limiti. Oltre questi, noi parliamo di inquinamento e contaminazione (i due termini non sono esattamente sinonimi, ma ne parlerò altrove) per cui possiamo incorrere in seri problemi di salute.

State lontani da giornali e siti internet in cui si propaga un facile allarmismo sul contenuto tossico delle acque. Come la chimica ci insegna, noi abbiamo bisogno di acqua e di tutto ciò che essa contiene per la nostra sopravvivenza.

Fonte dell’immagine di copertinahttp://www.ilsole24ore.com/art/impresa-e-territori/2017-03-21/la-giornata-dell-acqua-primo-comandamento-riciclarla-192438.shtml?uuid=AEobRjq

Matematica, fisica e medicina: debunking e fact checking

Viaggio tanto. In aereo, in treno, in autobus e porto sempre con me qualche libro da leggere per evitare di annoiarmi e tenere acceso, per quanto possibile, il cervello. Nel mio ultimo viaggio ho portato con me l’ultimo di Walter Quattrociocchi ed Antonella Vicini dal titolo “Liberi di crederci” (Figura 1). In esso gli autori  focalizzano la loro attenzione sulla loro ipotesi in base alla quale debunking e fact checking sono inutili. Il motivo è che queste due pratiche non fanno altro che rafforzare le convinzioni di chi è già orientato ideologicamente verso certe posizioni politiche, scientifiche o altro.

Figura 1. Copertina del libro del Dr. Walter Quattrociocchi e della Dr.ssa Antonella Vicini

Ho, tuttavia, notato che gli autori nella loro disamina commettono a mio modesto parere un paio di ingenuità.

Ad un certo punto essi scrivono a proposito di vaccinazioni in questi termini:  “La legge ha innalzato l’obbligo a dieci vaccinazioni, pena il divieto di frequentare l’asilo nido e la scuola dell’infanzia per i non vaccinati”.
Ecco. Questo è il tipico modo di esprimersi dei no-vaxx. Non sto dicendo che Quattrociocchi/Vicini lo siano. Sto solo dicendo che hanno usato una terminologia non corretta. Le vaccinazioni non sono 10. Dieci sono le patologie contro cui si viene vaccinati. Le vaccinazioni che bisogna fare sono solo due: vaccino esavalente e vaccino MPRV. In totale, seguendo il calendario vaccinale, le iniezioni che bisogna fare sono cinque, diluite nei primi 5/6 anni di vita del bambino. In particolare, il vaccino esavalente (che copre per difterite, tetano, pertosse, polio, Hib, epatite B) viene fatto dopo il secondo mese di vita (ed ha 2 richiami); il vaccino MPRV (che copre per morbillo, parotite, rosolia e varicella) viene fatto dopo l’anno di età (con richiamo singolo dopo i 5/6 anni). In definitiva, quindi, non si fanno 10 iniezioni con relativi richiami (come verrebbe da dedurre dalla terminologia usata da Quattrociocchi/Vicini), ma 3 + 2 iniezioni. Giusto per completezza non è neanche vero che il numero di antigeni è enorme (a onor del vero Quattrociocchi/Vicini non ne discutono, ma lo faccio io per completare il discorso vaccini in questa sede). Infatti, i due vaccini che vengono inoculati e che coprono per 10 patologie contengono circa 260 antigeni contro, per esempio, i 3000 che anni fa erano contenuti nel solo vaccino anti morbillo.

Leggere questa inesattezza mi ha lasciato un po’ l’amaro in bocca. Non potevano chiedere informazioni a qualche esperto (come ho fatto io per scrivere queste poche righe) prima di pubblicare il loro libro? Quando trattano dei propri argomenti Quattrociocchi/Vicini sono veramente pignoli. Perché non lo sono altrettanto quando si riferiscono a campi scientifici che prevedono competenze diverse dalle loro? O non è una distrazione e questa frase con relativo linguaggio è voluta?

Ma andiamo oltre.

A parte ciò che ho appena evidenziato, nella loro discussione in merito alle echo chamber, Quattrociocchi/Vicini scrivono: “Un altro errore comune è confondere le scienze come la fisica o la matematica, i cui risultati si ottengono con metodologie rigorose, con la medicina”.

Qui entriamo in un campo minato perché tutti quelli che si occupano di scienza e di filosofia della scienza possono avere idee differenti.
Io qui dico la mia con la consapevolezza di innescare una miccia.

Innanzi tutto: cos’è la scienza? È il complesso di conoscenze che si ottiene applicando un metodo, quello scientifico, alle osservazioni fisiche che si fanno: vedo; faccio un’ipotesi; sulla base di questa ipotesi faccio una previsione; verifico la previsione mediante degli esperimenti; se la risposta sperimentale è sì, l’ipotesi è corretta; se la risposta è no, l’ipotesi va riformulata. Questo, in sintesi, il metodo scientifico (ne avevo parlato anche qui). Sulla base di quanto scritto, può la matematica essere definita scienza? Diciamo che la matematica è nata per risolvere problemi concreti legati al commercio in senso lato (mi perdonino i miei amici matematici se sono un po’ troppo superficiale). Quindi, usando il pensiero moderno, mi sento di dire che la matematica è nata come una forma di scienza. Tuttavia, da quando abbiamo imparato a contare per risolvere problemi concreti, è passata tanta acqua sotto ai ponti. La matematica ha subito una evoluzione che altre discipline scientifiche non hanno ancora avuto. La matematica, per come la vedo io, è diventata una struttura del pensiero. Non ha più bisogno delle osservazioni fisiche (come quelle legate al commercio in senso lato) per poter avanzare.

Ad oggi, come sovrastruttura del pensiero, la matematica è al di sopra di quelle che possono essere indicate come scienze (ovvero tutti quei campi che hanno bisogno di osservazioni sperimentali per poter avanzare) e fornisce gli strumenti (logici e fisici) ad ognuna di esse. Esistono scienze che sono come la matematica? Qualcosa che ci si avvicina sono la fisica e la chimica teorica. Tuttavia, entrambe hanno poi bisogno di procedure sperimentali per poter validare ciò che sono le conclusioni del pensiero. Senza esperimenti sia la chimica che la fisica teorica sono fini a se stesse e non hanno validità alcuna.

E la medicina? In quanto forma di conoscenza basata sul metodo induttivo – cioè trarre un giudizio generale o universale partendo dall’osservazione di uno o più fatti particolari, di dati contingenti, v. vocabolario Treccani – (esattamente come fisica e chimica), anche la medicina è una scienza. Gli strumenti logici e fisici con cui procedere vengono forniti alla medicina dalla matematica (proprio come nel caso di fisica e chimica). Quali sono le metodologie rigorose che accomunerebbero matematica e fisica, ma non la medicina come scritto da Quattrociocchi/Vicini nel loro libro? Forse la statistica, su cui si basa principalmente la medicina, non è ritenuta rigorosa? Ed allora la termodinamica statistica elaborata da Boltzmann? E la meccanica quantistica (che fornisce gli strumenti per la diagnostica per immagini) basata sulla statistica? E potrei continuare perché anche la biologia, altra branca della conoscenza scientifica, si basa sulla statistica. Forse l’autore si riferisce alla discrezionalità umana che sembra essere presente nella medicina ma non nella fisica? Non è così. Entrambe le forme di conoscenza sono soggette a discrezionalità umana: un medico può sbagliare una diagnosi, così come un fisico può sbagliare l’impianto sperimentale oppure, pur avendo un impianto sperimentale corretto, non riuscire a “vedere” ciò che ha “sotto il naso”. In altre parole, anche un fisico può sbagliare la diagnosi.
In definitiva, secondo me, nella loro affermazione, gli autori sono stati un po’ superficiali (come lo sono stati nel caso dei vaccini). Questa superficialità può avere conseguenze notevoli perché chi non è avvezzo al metodo scientifico può essere portato a pensare che la medicina sia roba da stregoni, mentre la fisica sia una materia con dignità superiore. Non è così. Entrambe le discipline hanno pari dignità ed entrambe fanno buon uso di tutti gli strumenti, egualmente rigorosi, messi a disposizione dalla sovrastruttura matematica. E tanto per evidenziare che il lavoro medico prevede un approccio rigoroso ed interdisciplinare, inserisco la notizia che potete leggere ingrandendo la Figura 2 (oppure cliccando qui).

Figura 2. La medicina riesce a salvare la vita ad un bambino con rara patologia

È finita qui? No. Perché basandosi sulle loro osservazioni, come scritto nel paragrafetto introduttivo, Quattrociocchi/Vicini evidenziano l’inutilità del fact checking. Mi sembra allora interessante riportare una notizia apparsa recentemente su La Gazzetta di Modena (qui e Figura 3) e su altri siti minori (per esempio qui).

Figura 3. Un fact checking test ha avuto successo tra gli studenti di un istituto professionale

Una professoressa di un istituto tecnico industriale di Modena ha ideato un fact checking test con cui si sono cimentati i suoi allievi. A quanto pare il fact checking ha funzionato. Alcuni pregiudizi sono stati rimossi. Mi rendo conto che questo è un fatto isolato rispetto ai grandi numeri di cui dispone Quattrociocchi. Mi permetto di pensare, però, che c’è qualcosa di positivo. Da un punto di vista scientifico posso dire che il fact checking ha funzionato date le condizioni al contorno utilizzate (ragazzini di un istituto tecnico industriale costretti ad imparare). Se riformulassimo le condizioni al contorno in modo da adattarle ai grandi numeri, sarebbe possibile un esito positivo del fact checking e, di conseguenza, la rimozione dell’ipotesi di inutilità dello stesso evidenziata dagli studi di Quattrociocchi? Non lo so e qui mi fermo. Non è il mio campo ma qualcun altro con più competenze di me potrebbe anche farci un pensiero sopra e dire a noi se questa ipotesi di lavoro potrebbe funzionare o meno.

Fonte dell’immagine di copertina: https://www.insidemarketing.it/fact-checking-strumenti-verifica-notizie/

La chimica del sapore. Il dolce

Guardate la Figura 1. Interessante vero? Si tratta di alcuni dolcificanti di sintesi. Le loro strutture sono alquanto differenti le une dalle altre. Come è possibile che tutte quelle molecole stimolino la sensazione del “dolce”?

Figura 1. Strutture molecolari di alcuni dolcificanti di sintesi (Fonte)

In base al principio secondo cui l’attività biochimica di una molecola dipende dalla sua struttura molecolare, ci si aspetterebbe che il sapore dolce possa essere dovuto alla similitudine strutturale delle molecole che costituiscono i dolcificanti. Ed invece non è così.  Molecole dalla natura chimica molto differente mostrano tutte la medesima capacità dolcificante (in merito all’intensità del sapore dolce ho già scritto qui).

Ricordiamo che tutto quanto studiamo nei libri dei settori scientifici, in realtà, è controintuitivo. È vero che esiste la relazione biunivoca struttura-attività (ad una data struttura corrisponde quella attività biochimica ed una certa attività biochimica è dovuta ad una specifica struttura molecolare), tuttavia non è solo la forma della molecola che deve essere presa in considerazione per spiegare l’attività biochimica; occorre prestare attenzione anche ad altri fattori.

Una delle prime teorie ad essere state sviluppate per spiegare perché molecole dalle caratteristiche così differenti siano in grado di funzionare tutte come dolcificanti, è quella che prende il nome di “modello AH-B” (Figura 2).

Figura 2. Schema del modello AH-B

I recettori presenti sulla nostra lingua sono caratterizzati dalla presenza di due gruppi funzionali di cui uno è un donatore di idrogeno (-AH in Figura 2) e l’altro è un accettore di idrogeno (-B in Figura 2).  Il dolcificante è una molecola che contiene almeno due gruppi funzionali che hanno le stesse proprietà donatrici/accettrici di idrogeno dei gruppi presenti sulla superficie dei recettori.

Quando la molecola “dolcificante” si avvicina al recettore del sapore dolce presente sulla lingua, si formano due legami a idrogeno come quelli mostrati in Figura 2. È proprio alla presenza di questi due legami a idrogeno che è attribuibile il sapore “dolce”.

La Figura 3 mostra quali sono i gruppi funzionali di diverse molecole dolcificanti in grado di formare i legami a idrogeno summenzionati.

Figura 3. Schema dei gruppi funzionali in grado di formare i legami a idrogeno nel modello AH-B (Fonte)

In realtà le cose sono un po’ più complesse di quanto descritto.  Tuttavia, i meccanismi esatti del perché sentiamo il “dolce” o altre tipologie di sapori, non sono ancora ben chiari. Per avere più informazioni e delucidazioni approfondite, consiglio la lettura dei lavori ai link nel paragrafo “Per saperne di più”.

Per saperne di più
  1. Shallenberger et al., 1967, Nature, 216: 480
  2. Kier, 1972, J. Pharm. Sci., 9: 1394
  3. Shallenberger, 1997, Pure & Applied Chemistry, 69: 659
  4. Smith et al., 2001, Scientific American, 32
  5. Morini and Bassoli, 2007, AgroFood, 6
  6. Zhang et al., 2010, PNAS, 107: 4752
  7. Bo Liu et al., 2011, The Journal of Neuroscience, 31: 11070

Fonte dell’immagine di copertinahttp://www.misya.info/ingrediente/zucchero

Il decalogo del ciarlatano scientifico

Chi è il ciarlatano? Si tratta di una persona poco affidabile, di un imbonitore, di qualcuno che vende fumo. Nel mondo scientifico, il ciarlatano è colui che cerca la fama proponendo modelli che spiegano solo ciò che egli pensa di osservare, senza dare alcuna importanza a ciò che è stato fatto in precedenza. Si tratta di persone con seri problemi di personalità che tendono a paragonarsi a grandi del passato come Galilei.

Come possiamo riconoscere un ciarlatano? Alla luce dell’analisi del comportamento medio dei ciarlatani, è possibile stilare un decalogo di atteggiamenti cui il ciarlatano medio tende ad attenersi.

Il decalogo per riconoscere il ciarlatano scientifico

1. tende a isolarsi dall’ambiente scientifico;
2. per comunicare le sue scoperte non usa i canali tradizionali in genere utilizzati da tutti gli scienziati (riviste scientifiche e congressi), ma preferisce la stampa non specializzata;
3. i suoi metodi sono segreti e non vengono divulgati;
4. pretende vi sia un pregiudizio degli scienziati nei suoi confronti;
5. cita casi in cui insigni scienziati dovettero lottare contro il dogmatismo scientifico dei loro tempi;
6. denuncia l’insufficienza delle teorie scientifiche attuali;
7. i suoi resoconti sono lacunosi o inesistenti;
8. quando i suoi metodi vengono sottoposti a una valutazione scientifica, rifiuta di accettarne i risultati;
9. può essere indifferentemente incolto o fornito di titoli accademici;
10. i suoi sostenitori sono privi di competenze nel campo in cui pretende di esprimersi.

Riconoscete in uno o più punti persone che rispondono ad uno o più dei requisiti anzidetti? Io sì. Ci sono stati e ci sono molti colleghi che, pur avendo fatto un ottimo lavoro in un passato più o meno recente, sono poi passati al lato oscuro della scienza. Non mancano tra questi illustri premi Nobel che, affetti dal Nobel disease, pensano di poter dire la loro anche in campi di cui sono totalmente inesperti.

Per approfondire

Luca Simonetti – La scienza in tribunale (2018) Fandango libri
Lista di scienziati famosi affetti da Nobel disease

Fonte dell’immagine di copertina: http://www.stoccolmaaroma.it/2014/due-nobel-a-trieste/

Fonte dell’immagine in chiusura: http://goabgamersab.blogspot.it/2015/08/bien-bienvenidos-vallan-ala-pagina-web.html

Aspirina: una storia breve

1763. Il reverendo Stone della Chiesa d’Inghilterra informa la Royal Society che un infuso da lui preparato con la corteccia del salice bianco (Figura 1) e somministrato ad una cinquantina dei suoi parrocchiani affetti da stato febbrile, ha funzionato molto bene nell’attenuare la febbre.

Figura 1. Salice bianco (nome botanico Salix alba) dalla cui corteccia, nel 1763, fu preparato un infuso contro la febbre
Tutto nasce durante una passeggiata

Il reverendo non sa perché l’infuso abbia funzionato, ma pare che l’idea per tale rimedio gli fosse venuta  nel 1758 durante una passeggiata in un bosco. Per motivi non noti, fu indotto ad assaggiare la corteccia del succitato albero e notò una corrispondenza di sapori con quella dell’albero della febbre (si tratta del Cinchona) usata fin dall’antichità tra le popolazioni pre-colombiane per la cura di stati febbrili. Tale corrispondenza lo indusse a pensare che anche la corteccia del Salix alba potesse avere gli stessi effetti curativi, come effettivamente potè verificare.

Il principio attivo

Ciò che il reverendo Stone non poteva sapere era che il principio attivo nella corteccia dell’albero della febbre era differente da quello presente nella corteccia del salice bianco. Infatti, mentre nella prima era presente il  chinino (Figura 2A), nella seconda era presente l’acido salicilico (Figura 2B).

Figura 2. A. Struttura del chinino presente nella corteccia dell’albero della febbre i cui effetti curativi erano noti fin da tempi antichi tra le popolazioni precolombiane. B. Struttura dell’acido salicilico presente nella corteccia del salice bianco o Salix alba i cui effetti curativi furono scoperti dal reverendo Stone.
Gli effetti collaterali

L’acido salicilico presenta gravi effetti collaterali dovuti al fatto che è un acido organico abbastanza forte (Figura 3). In particolare, esso è un potente irritante in grado di causare emorragie ed ulcere sia in bocca che nello stomaco.

Figura 3. Equilibrio di dissociazione dell’acido salicilico. La costante acida ha il valore riportato in figura
Ed eccoci all’aspirina

Nel 1893, Felix Hoffmann, un chimico della Bayer, sintetizzò un derivato dell’acido salicilico mediante una reazione di acilazione al gruppo ossidrilico. Ottenne l’acido acetil salicilico (Figura 4) i cui effetti collaterali risultarono molto più tenui rispetto a quelli dell’acido salicilico, pur conservando le medesime proprietà terapeutiche. Era nata l’aspirina©.

Figura 4. Struttura molecolare dell’acido acetil salicilico

Il nome Aspirina© sembra sia stato ricavato usando la radice del nome dell’acido spirico, il principio attivo presente nella Spiraea ulmaria e chimicamente simile all’acido salicilico, a cui venne anteposta la “a” di acetile.

I vantaggi dell’Aspirina©

Gli esperimenti sull’attività farmacologica dell’Aspirina© condotti dal Dr. Heinrich Dreser della Bayer, ne evidenziarono non solo le caratteristiche antipiretiche, ma rivelarono anche le sue  proprietà antireumatiche e la capacità di migliorare l’attività cardiaca attraverso la fluidificazione del sangue. La presenza del gruppo acetile, inoltre, ne aumentava la torrelabilità gastrica rispetto all’acido salicilico.

Oggi l’Aspirina© è un farmaco molto comune utilizzato in tutto il mondo in diverse formulazioni farmacologiche. Tra queste l’Alka Seltzer®, la forma solubile di Aspirina©, è quella più famosa. L’Alka Seltzer® contiene bicarbonato di sodio, acido citrico ed acido acetil salicilico. Il bicarbonato di sodio ha il compito di deprotonare l’acido acetil salicilico per la formazione dell’acetilsalicilato di sodio (Figura 5). Quest’ultimo è più facilmente solubile dell’acido acetil salicilico. La presenza dell’acido citrico (oltre che quella di altri aromi come quelli di arancia e limone) serve a mascherare il cattivo sapore dell’acetilsalicilato di sodio.

Figura 5. Reazione di formazione dell’acetilsalicilato di sodio

Un’altra formulazione farmacologica è l’aspirinetta. Si tratta di pillole che contengono circa 1/5 (ovvero all’incirca 100 mg) della dose di acido acetilsalicilico contenuta nelle tradizionali confezioni di Aspirina© (ovvero 500 mg). Assunta giornalmente, questa dose di acido acetisalicilico consente di prevenire i trombi e, di conseguenza, problematiche cardiache.

Gli svantaggi dell’Aspirina

Nonostante tutti i suoi effetti positivi, l’idrolisi del gruppo acetile nello stomaco porta alla formazione dell’irritante acido salicilico con possibilità di formazione di ulcere. Gli individui sensibili devono evitare di assumere Aspirina©. Inoltre la dose giornaliera consigliata per gli adulti non deve eccedere i 4 g (sotto controllo medico). Oltre la predetta quantità gli effetti indesiderati possono portare anche alla morte. Nel caso di bambini al di sotto dei 12 anni, l’assunzione di acido acetilsalicilico ha portato a rarissimi casi di sindrome di Reye, per cui è sempre consigliabile non usare Aspirina© al di sotto dell’età anzidetta.

Il funzionamento come antipiretico

Quando il nostro organismo subisce qualche lesione o viene invaso da microorganismi patogeni, si attiva una risposta che porta all’aumento nel circolo sanguigno della quantità di molecole che prendono il nome di prostaglandine, il cui precursore è l’acido prostanoico la cui struttura è in Figura 6.  È la presenza delle prostaglandine che porta allo stato febbrile.

Figura 6. Struttura dell’acido prostanoico, precursore delle prostaglandine

Sia l’acido salicilico che il suo derivato, acido acetilsalicilico, sono in grado di inibire l’attività degli enzimi coinvolti nella sintesi delle prostaglandine. La conseguenza è, quindi, la diminuzione della temperatura corporea.

Conclusioni

La storia dell’Aspirina© ci insegna che un prodotto naturale come l’acido salicilico, sebbene possa avere effetti benefici, ha tante controindicazioni peraltro anche abbastanza gravi. Al contrario un prodotto di sintesi come il suo derivato acetilato, ha molte meno controindicazioni e può essere usato con maggiore sicurezza. Naturalmente, pur essendo oggi l’Aspirina© un prodotto da banco, cioè il preparato contenente 500 mg di acido acetilsalicilico è vendibile senza presentazione di ricetta medica, è sempre consigliabile non abusarne ed assumerne sempre sotto controllo medico in modo tale da poter monitorare eventuali intolleranze che possono sfociare in effetti indesiderati piuttosto pericolosi.

 

 

Fonte dell’immagine di copertinahttp://www.aspirina.it/

I dolcificanti parte IV. Lo zucchero ad alta solubilità

Stamattina mi sono alzato, ho eseguito tutte le operazioni mattutine per consentirmi di svegliarmi (di sabato sono senza successo), sono andato dal barbiere a farmi radere quei quattro peli che mi son rimasti e poi sono andato al bar vicino casa per prendere un cappuccino.

Direte voi: “ma perché questo ci racconta sti fatti? Cosa interessa a noi di quello che fa la mattina e di quanti peli abbia?”

Un attimo e vi racconto.

Arrivo semisveglio al bar e, dopo aver chiesto la mia bevanda preferita a base di caffè e latte montato, l’occhio mi cade sul contenitore delle bustine di zucchero. Alcune di queste sono verdi. La prima cosa che penso, mettendo in funzione il neurone attivo nel fine settimana, è: “toh, guarda. Ci sono le bustine di zucchero steviolitico”.

Grande è la mia sorpresa quando prendo una di quelle bustine verdi e leggo che si tratta di zucchero ad alta solubilità.

Qui i miei sensi di chimico (come quelli di ragno di Peter Parker) si allertano. Cos’è sto zucchero ad alta solubilità?

Dovete sapere che sotto l’aspetto chimico, il concetto di solubilità si riferisce alla quantità massima di soluto che è possibile sciogliere in una prefissata quantità di solvente prima che il soluto cominci a precipitare.

Esistono zuccheri che hanno solubilità differenti. Per esempio, è possibile sciogliere in un litro di acqua circa 2 kg di saccarosio, circa 1 kg di glucosio, circa 3 kg di fruttosio e circa 7 g di lattosio. Insomma, a seconda di quella che è la natura chimica dello zucchero preso in considerazione è possibile sciogliere quantità differenti di prodotto nella stessa quantità di acqua.

Da chimico ho pensato: “zucchero ad alta solubilità…va bene…si tratta di fruttosio”. Poi però ho pensato: “un attimo…ma perché chiamarlo zucchero se nel linguaggio comune questo termine corrisponde al saccarosio? Perché il fruttosio non viene indicato come tale, dal momento che in questo modo possono venderlo ad un prezzo maggiorato?”.

A questo punto dopo aver fatto quattro chiacchiere col gestore del bar, gli chiedo se posso portare via una bustina di questo “zucchero ad alta solubilità”. Sono curioso. Voglio capire di cosa si tratta. Vado in laboratorio dove ho un po’ di strumenti che posso usare il sabato mattina senza colpo ferire.

La prima cosa che faccio è prendere una bustina di zucchero che usiamo per il caffè in laboratorio (Figura 1) e, dopo essere andato in giro per cercare un po’ di vetrini d’orologio, non faccio altro che pesare il contenuto delle bustine contenenti lo zucchero “normale” (l’aggettivo non vuol dire nulla chimicamente, ma mi serve solo per indicare lo zucchero che ho prelevato dal cassetto sotto la macchina da caffè in laboratorio) e quello ad alta solubilità.

Figura 1. La bustina verde è lo zucchero “ad alta solubilità. Nel cerchio la scritta che mi ha incuriosito. La bustina bianco/blu è una “normale” bustina di zucchero che usiamo per il caffè in laboratorio.

Ognuna delle bustine contiene circa 4 g di prodotto (Figura 2).

Figura 2. A sinistra il peso dello zucchero “normale”. A destra quello “ad alta solubilità”. Non fatevi trarre in inganno. Su una bilancia meno sofisticata di quella da laboratorio, i pesi sono identici (e comunque nell’aprire la bustina dello zucchero “ad alta solubilità”, una piccola quantità di campione mi è caduta).

L’ispezione visiva (in gergo laboratoriale noi diciamo “occhiometrica”) mi permette di vedere che lo zucchero “ad alta solubilità” è più finemente suddiviso rispetto a quello “normale” (Figura 3).

Figura 3. A sinistra l’aspetto fisico dello zucchero “ad alta solubilità”. A destra quello dello zucchero “normale”

A questo punto comincio a pensare che il mio barista avesse ragione nel dire che si tratta di zucchero “normale” che però appare un po’ più impalpabile. Ma io sono un chimico e non mi fido delle parole. Già che sono in laboratorio posso usare lo spettrometro ad infrarossi (spettroscopia FT-IR) per registrare l’impronta digitale molecolare dei due prodotti.

Figura 4. Spettri FT-IR dello zucchero “ad alta solubilità” (in nero) e dello zucchero “normale” (in rosso). Le due impronte sono identiche.

La Figura 4 mostra i risultati dell’analisi. Le due impronte molecolari sono assolutamente identiche: si tratta di normale saccarosio. Ed allora perché stampare sulla bustina “alta solubilità”, dal momento che il saccarosio, indipendentemente dal contenitore in cui è racchiuso, ha sempre la stessa solubilità?

Qui entra il gioco l’uso scorretto dei termini chimici nel mondo del marketing. Ma andiamo con ordine.

La velocità con cui un soluto si scioglie in un solvente dipende dall’area superficiale del soluto. Più elevata è l’area superficiale, più velocemente avviene la solubilizzazione come conseguenza di un contatto più intimo tra soluto e solvente.

Il valore dell’area superficiale dipende dalla dimensione dei granuli del soluto. Più piccola è la dimensione di questi granuli, più alta è l’area superficiale e più velocemente avviene la solubilizzazione. In altre parole, il linguaggio del marketing si è appropriato del termine “solubilità”, che ho definito poco più su, per farlo diventare “velocità di solubilizzazione”.

Quindi secondo i “geni” del marketing,  “alta solubilità” non vuol dire che nella stessa quantità di solvente posso sciogliere una quantità più elevata di soluto, ma significa che lo zucchero si scioglie più rapidamente.

Il sabato mattina, quando ancora non riuscite a capire se siete vivi o se deambulate come zombies solo per inerzia, è importante usare lo zucchero “ad alta solubilità”: fare tre giri di cucchiaino nel vostro caffè invece che quattro vi aiuta a risparmiare energia.

That’s all folks (e grazie al gestore del Cicì Coffee and Drink per le quattro chiacchiere che facciamo la mattina e per avermi regalato una bustina di questo zucchero “ad alta solubilità”)

 

 

Fonte dell’immagine dell’uomo ragno: https://www.zoomflume.com/events/meet-spiderman-2017/

Fonte dell’immagine di copertina: https://blog.edoapp.it/saccarosio-cose-e-a-cosa-serve/

Share