Ragni e farmaci psicotropi

Correva l’anno 1948 e lo zoologo H.M. Peters conduceva delle osservazioni sulle modalità con cui i ragni tessono la loro tela. Peters aveva necessità di documentare le sue osservazioni con delle foto. Incontrò ben presto un problema. I ragnetti non sembravano molto collaborativi. Tessevano la tela nelle prime ore del mattino, preferendo operare nella totale oscurità. Questo, oltre a costringere Peters a delle levatacce, impediva l’uso delle tecniche allora in uso per scattare le foto. Nel ‘48 non esistevano le macchine fotografiche di oggi e per ottenere immagini decenti era necessario illuminare la scena. L’illuminazione, tuttavia, contrastava con le abitudini dei ragnetti. Peters decise, allora, di rivolgersi ad un suo collega farmacologo, Peter Witt, per capire se fosse possibile somministrare un qualche farmaco ai ragnetti per spostare la loro attività dalla notte fonda alle prime luci del mattino.

Witt decise di somministrare ai ragnetti diverse sostanze psicotrope e di valutarne gli effetti sul comportamento e la produttività.

La Figura 1 mostra la tela normale di un ragno a cui non era stato somministrato nulla.

Figura 1. Tela fatta da un ragno non “drogato” (Fonte)

Dopo somministrazione di mescalina, la rete appariva come in Figura 2

Figura 2. Tela ottenuta dopo somministrazione di mescalina (Fonte)

La mescalina è una sostanza che si trova in un cactus che veniva masticato  dai nativi americani per indurre allucinazioni. Queste venivano descritte come veri e propri contatti con le divinità. Evidentemente, i ragnetti, a cui era apparsa improvvisamente la loro aracno-divinità suprema,  avevano dimenticato di costruire parte della loro tela lasciando il lavoro a metà.

La dietilammide dell’acido lisergico o LSD è una sostanza allucinogena la cui struttura è simile a quella dell’acido lisergico, tossina da cui è stata sintetizzata.  Quest’ultima è contenuta nella segala cornuta. La LSD, come lo stesso acido lisergico, provoca stati di alterazione che corrispondono ad un aumento delle percezioni sensoriali e visioni distorte della realtà. Sembra che la tossina contenuta nella segala cornuta sia stata responsabile delle allucinazioni che, nel XVII secolo, furono alla base delle accuse di stregoneria e della caccia alle streghe che si realizzò a Salem. Per effetto delle “allucinazioni” indotte da LSD, la tela dei ragnetti appariva come in Figura 3.

Figura 3. Tela tessuta dopo somministrazione di LSD (Fonte)

I ragni hanno “dimenticato” di tessere gran parte dei fili interni nella struttura portante della loro tela.

Quante volte diciamo “ma che ti sei fumato?” quando vogliamo riferirci a qualcuno il cui comportamento è svagato? Questa locuzione, come è ben noto, si riferisce all’uso di marijuana che ha la proprietà di alterare le proprietà cognitive degli individui. Ebbene, a quanto pare anche i ragni vengono influenzati dagli effetti della marijuana. La Figura 4 mostra la rete fabbricata dai ragni a cui è stata somministrato questo farmaco.

Figura 4. Ragnatela fatta da ragni soggetti all’azione della marijuana (Fonte)

I caffè, si sa, contengono caffeina, un alcaloide che, se assunto in grande quantità, può portare a problemi cardiaci. Oltre agli effetti cardiaci, la caffeina stimola anche il sistema nervoso centrale tanto è vero che molte volte diciamo “no, grazie. Il caffè mi rende nervoso”. Il ragno che ha tessuto la tela mostrata in Figura 5 si deve essere innervosito non poco per aver fatto una ragnatela che ha poco in comune con quella tradizionale di Figura 1.

Figura 5. Ragnatela fatta da un ragno sottoposto all’azione della caffeina (Fonte)

La benzedrina è una molecola che appartiene alla classe delle amfetamine, farmaci che stimolano sia il sistema nervoso centrale che periferico. La sua somministrazione “induce una spiccata capacità di iniziativa, stato di eccitazione ed esaltazione; scompare qualsiasi sensazione di fatica con conseguente aumento dell’attività motoria e logorrea; si fortifica mentalmente il soggetto senza che però si potenzi il rendimento personale”. I ragnetti che hanno prodotto la tela di Figura 6 hanno lavorato con maggiore velocità rispetto al normale fabbricando, in ogni caso, una rete molto più asimmetrica rispetto a quella di Figura 1.

Figura 6. Tela ottenuta sotto l’effetto di benzedrina (Fonte)

Quando i ragnetti sono stati sottoposti all’azione di un sonnifero, la ragnatela è risultata largamente incompleta, come mostrato in Figura 7.

Figura 7. Ragnatela ottenuta sotto l’effetto di un sonnifero (Fonte)

Gli esperimenti condotti da Witt alla fine degli anni quaranta del XX secolo, sono stati riprodotti, ed i risultati confermati, dagli scienziati della NASA molto recentemente. Purtroppo per Peters, i ragnetti non hanno modificato le loro abitudini mattutine, ma solo quelle relative alla loro capacità di costruire le ragnatele.

Interessante, vero?

Fonte: Wikipedia.en
per saperne di più

ScienceAlert

Kscience

Wikipedia

Fonte dell’immagine di copertina: qui

Acrilamide. Una molecola che fa paura

L’ acrilamide è una molecola di cui di tanto in tanto si sente parlare in giro per la rete o nei giornali a tiratura nazionale soprattutto nei periodi di festa durante i quali si prospettano enormi abbuffate.

Si tratta di una molecola dalle caratteristiche genotossiche e cancerogene, ovvero in grado di modificare il DNA e provocare il cancro, ottenuta per degradazione ad alte temperature (>120° C) di alcune molecole contenute negli alimenti sottoposti a cottura.

Ma andiamo con ordine.

L’ acrilamide ha la struttura riportata in Figura 1.

Figura 1. Struttura dell’acrilamide (Fonte)

Come si evince dalla struttura, si tratta di una molecola con doppi legami coniugati in cui il gruppo funzionale che ne determina le caratteristiche chimiche è quello amidico, ovvero il sistema -NH2 legato al carbonio carbonilico.

Il meccanismo attraverso cui l’ acrilamide si forma durante la cottura degli alimenti è stato delucidato solo nel 2003 (Figura 2).

Figura 2. Il lavoro in cui è stato proposto per la prima volta il meccanismo di formazione dell’acrilamide

La Figura 3 mostra tutte le reazioni coinvolte nella formazione dell’ acrilamide.

Figura 3. Meccanismo di formazione dell’acrilamide

Un aminoacido, l’arginina, reagisce con il gruppo carbonilico di uno zucchero. Si forma una base di Schiff, responsabile dell’imbrunimento dell’alimento durante la cottura, dalla cui decarbossilazione si ottiene una base di Schiff decarbossilata che può essere soggetta a due meccanismi di decomposizione. Da un lato si può avere idrolisi con formazione di 3-propionamide dalla cui de-amminazione si ottiene l’ acrilamide; dall’altro si può avere degradazione termica con formazione di acrilamide ed una nuova base di Schiff come sottoprodotto.

La Figura 3 è presa dal lavoro pubblicato su J. Agric. Food Chem. di cui si riporta il titolo in Figura 2. La rivista è una delle più accreditate in ambito agricolo ed alimentare. Nonostante questo non posso non rilevare un errore nel meccanismo descritto. Infatti, la decarbossilazione della base di Schiff porta alla formazione di una base di Schiff decarbossilata che, secondo gli autori, è soggetta all’equilibrio descritto in Figura 4.

Figura 4. Equilibrio cui è soggetta la base di Schiff decarbossilata secondo gli autori del lavoro pubblicato su J. Agric. Food Chem.

In realtà le due strutture descritte differiscono tra loro solo per la distribuzione degli elettroni, per  cui esse sono ibridi di risonanza e non possono essere correlate dalla doppia freccia. Esse devono essere correlate da una freccia a doppia punta (↔).

Il meccanismo di azione dell’ acrilamide

Il gruppo vinilico dell’acrilamide è molto reattivo e può dar luogo alla formazione dell’epossido mostrato in Figura 5.

Figura 5. Forma epossidica dell’acrilamide (Fonte)

È proprio questa forma epossidica che, in presenza delle basi nucleotidiche del DNA, reagisce per dare i prodotti mostrati in Figura 6.

Figura 6. Prodotti delle reazioni tra le basi nucleotidiche e la forma epossidica dell’acrilamide (Fonte)

Gli addotti ottenuti per reazione della forma epossidica dell’acrilamide con le basi nucleotidiche del DNA sono responsabili delle alterazioni strutturali del DNA e della possibile insorgenza di forme tumorali.

Cosa fare

Dalla breve disamina sulla chimica dell’acrilamide appare chiaro che gli alimenti più pericolosi per la salute, quando sottoposti a cottura ad alta temperatura, sono quelli con elevato contenuto di zuccheri liberi. Tra questi le patate e tutti quelli ad elevato tenore di amido. Per evitare la formazione di acrilamide quando si utilizzano le patate, bisogna usare un po’ di accorgimenti (fonte):

  1. per la frittura si devono utilizzare oli con un punto di fumo elevato; i piu’ idonei sono l’ olio di oliva, l’ olio di arachide e il tanto bistrattato olio di palma. L’ olio di girasole e l’ olio di semi di soia sono assolutamente da evitare. Di fatto, gli oli formulati per le fritture sono costituiti in genere da una miscela di olio di arachide e olio di palma;
  2. L’ olio non deve essere riutilizzato per piu’ fritture;
    le patatine non devono diventare troppo scure; bisogna diminuire il piu’ possibile i tempi di frittura;
  3. prima di friggerle è buona norma lasciare le patate in ammollo in acqua e sale per almeno 30 minuti; in questo modo parte degli zuccheri semplici passano nell’ acqua e di conseguenza si originerà un quantitativo inferiore di acrilammide;
  4. le patate devono essere conservate al buio ma non in frigorifero, perché il freddo le rende più dolci, dunque più ricche di zuccheri liberi in grado di reagire con l’asparagina;
  5. è da evitare la germinazione perchè essa riattiva il metabolismo della patata che si arricchisce di zuccheri semplici e di amminoacidi.
i limiti suggeriti

La tabella mostrata in Figura 7 mostra i limiti massimi di acrilamide che devono essere presenti in alcuni alimenti. Per una visione migliore di questa tabella si può cliccare qui.

Figura 7. Limiti massimi ammissibili di acrilamide in alcuni alimenti
Note conclusive

Devo delle scuse a quelli dei miei lettori che non hanno una preparazione chimica. In questo lungo post ho deciso di non usare un linguaggio semplice. Ho utilizzato il linguaggio chimico che richiede delle conoscenze almeno da primo anno di università. Non c’è un motivo particolare per aver fatto questa scelta se non la mia pigrizia che in questo momento mi impedisce di concentrarmi a sufficienza per elaborare un discorso accessibile a quante più persone possibili. Spero sia chiaro che bisogna fare attenzione ai sottoprodotti che si ottengono durante la preparazione degli alimenti. Questi possono avere effetti avversi. Tuttavia, come già evidenziato in tanti altri post sul mio blog, è la dose che fa il veleno. Una alimentazione sana ed equilibrata assicura un ottimo stato di salute.

La lettura di questo articoletto molto poco divulgativo deve evidenziare che è possibile trovare errori più o meno gravi anche  in lavori pubblicati su riviste molto ben accreditate in ambito scientifico. Purtroppo tali errori sono visibili solo agli occhi dei tecnici e talvolta nemmeno ad essi visto che questi errori possono superare i filtri della peer review. Nel caso specifico della chimica dell’acrilamide gli errori cui si fa riferimento sono stati superati grazie alla prova del tempo. Dal 2003 ad oggi il meccanismo proposto per la formazione dell’acrilamide è stato più volte confermato.

Mi scuso anche per la bassa qualità delle immagini dell’articolo proposto. L’articolo è stato scritto usando un tablet e su questo mezzo le immagini appaiono di buona qualità. Sui computer, purtroppo, non è così.

Fonte dell’immagine di copertinahttp://www.mixerplanet.com/panettone-patate-pizza-cancerogeni-dipende-dal-metodo-cottura_117089/

Riflessioni pre natalizie. Sviluppo scientifico e stasi tecnologica

Una delle riviste che mi piace leggere è Wired. Non sempre lo faccio perché è una rivista che esce un paio di volte all’anno e non sempre mi ricordo di prenderla in edicola. Stavolta sì; mi è capitata sotto gli occhi nell’edicola dell’aeroporto e l’ho presa. Capisco che sapere quali siano le mie letture preferite non è che importi a molti, così come non é particolarmente interessante sapere in che modo mi ricordi di prendere le riviste in edicola. Questo sproloquio introduttivo mi serve solo per dire che nell’ultimo numero di Wired, dedicato a come sarà il nostro futuro, ho trovato una introduzione di Carlo Rovelli, tra i fisici italiani più prestigiosi, che mi ha fatto molto riflettere.

Rovelli in sintesi afferma: “Il futuro non dipenderà da nuove prodigiose scoperte o inaspettate tecnologie ma sarà determinato dai governanti che ci sceglieremo: ragionevoli o irragionevoli”. Le sue argomentazioni sembrano molto ragionevoli e condivisibili: “parlare del futuro è sempre parlare del presente. Scienza e tecnologia continuano ad avanzare ma, fra le due, c’è uno scarto. Presto mi aspetto maggiori passi avanti nella conoscenza del mondo […]. Ma non credo che la tecnologia spiccherà grandi salti avanti. […] A me, in effetti, sembra che lo sviluppo tecnologico sia già in un periodo di forte rallentamento. Da quando sono nato ho visto arrivare l’uso di massa del trasporto aereo, i computer, internet. Sembra molto ma, se provo a confrontarlo coi cambiamenti che ha vissuto mia nonna le novità di oggi impallidiscono. Lei ha conosciuto la radio, la televisione, l’illuminazione stradale, le automobili, gli aeroplani, la penicillina, l’educazione generalizzata, l’uomo sulla Luna e la bomba atomica. E ci sono state, in passato, innovazioni tecnologiche che hanno sovvertito la vita del pianeta […]. Per esempio la diffusione dei trattori ha fatto sì che la percentuale di uomini che coltivava la terra passasse da più del novanta percento a meno del dieci, e ciò ha cambiato l’esistenza di milioni di esseri umani e sovvertito in modo radicale la struttura sociale della società”.

Devo dire che, probabilmente perché sono appassionato di fantascienza e per questo abbastanza sognatore, non sono molto d’accordo con Rovelli. Egli ha fatto una serie di esempi molto significativi, però a me non convincono molto.

Chi avrebbe potuto prevedere nel 1905 che la spiegazione dell’effetto fotoelettrico di Einstein avrebbe portato dopo più di ottanta anni ai cancelli automatici? E chi avrebbe potuto prevedere negli anni sessanta del novecento che le tavolette usate dal Dr. Spock in Star Trek, noto telefilm di fantascienza, sarebbero diventate reali con gli attuali e-reader e tablet? Vogliamo parlare degli attuali telefoni cellulari di cui si anticipa l’esistenza sempre in Star Trek?

Mi potreste dire: “ma di cosa stai blaterando? Stai confondendo finzione con realtà. Una cosa è l’effetto fotoelettrico altra è la fantasia degli sceneggiatori di Star Trek”. È vero. Solo che molte volte la realtà supera la fantasia come spiega Lawrence Krauss nel suo “La fisica di Star Trek”.

Dove voglio andare a parare? Voglio semplicemente dire che lo sviluppo delle nostre conoscenze scientifiche non ci consente di dire come, quando e quanto la tecnologia potrà subire salti in avanti. Quello che a Rovelli sembra un periodo di forte rallentamento tecnologico, io lo vedo in altro modo.

La tecnologia è indissolubilmente legata al progresso scientifico. Ma anche il progresso scientifico è legato allo sviluppo tecnologico. Cose che oggi sono possibili, solo qualche anno fa erano impensabili a partire da internet di cui parla Rovelli e dal World Wide Web. La necessità di superare la lentezza nello scambio di informazioni nel mondo scientifico portò Timothy John Berners-Lee ad inventarsi quello che a noi oggi sembra qualcosa di ovvio: il web a cui internet è legato a doppio filo. E col web oggi io posso lavorare sul mio tablet scrivendo questo articolo mentre sorseggio il mio caffè. Di esempi del genere ne potrei fare a bizzeffe. Solo per rimanere nel mio ambito settoriale che è quello della risonanza magnetica nucleare, chi potrà mai dire cosa ci consentirà di conoscere in termini scientifici l’applicazione della rilassometria NMR a ciclo di campo combinata con la risonanza magnetica per immagini? Questo che è uno sviluppo tecnologico non potrà fare altro che far avanzare le frontiere della nostra conoscenza. Con esse ci saranno altri sviluppi tecnologici che potranno consentire  ulteriori passi avanti nelle conoscenze in un ciclo senza fine.

La tecnologia che deriva dallo sviluppo scientifico non è neutra neanche nei nostri confronti. Essa influenza il nostro modo di pensare e di muoverci man mano che la utilizziamo. Faccio mie e rendo più generali le riflessioni di Nicholas Carr nel suo “Internet ci rende stupidi?”: quando facciamo uso di uno strumento, qualsiasi esso sia, il nostro cervello viene modificato. In altre parole, si modificano le nostre connessioni neuronali in modo tale da permetterci di adattarci allo strumento di cui facciamo uso. Lo sviluppo di strumenti sempre più innovativi ci porta ad una riprogrammazione continua del nostro computer interno – il nostro cervello – cosicché esso è di gran lunga differente rispetto a quello dei nostri nonni.

Pur non essendo il nostro hardware – il nostro aspetto fisico – differente da quello dei nostri antenati di 10000 anni fa, il nostro software – ovvero le connessioni neuronali nel nostro cervello – invece lo è perché si è dovuto riprogrammare progressivamente per poter adattarsi alle innovazioni avvenute nel corso dei secoli. Questa riprogrammazione richiede del tempo ed è, secondo me, quello che a Rovelli sembra il periodo di progressivo rallentamento tecnologico in cui viviamo.

La Figura 1 (fatta a mano in un rigurgito vintage scientifico) rappresenta quello che penso in merito al progresso scientifico – ovvero delle conoscenze – e tecnologico. Ogni volta che c’è una innovazione (segmenti con pendenza positiva) abbiamo bisogno di tempo per la riprogrammazione del nostro software interno (segmenti con pendenza quasi nulla). Dopo questo tempo si presentano nuove innovazioni seguite da nuovi periodi di apparente rallentamento.

Non sono un neuro-scienziato e so benissimo di essermi avventurato in un campo che non è il mio. È molto probabile che io abbia detto una serie di sciocchezze, ma è proprio questo lo scopo di queste riflessioni: intavolare una discussione proficua con chi è più esperto di me.

Immagine di copertina. Foto personale della copertina di Wired inverno 2017/18

La chimica del cappuccino

Nelle mie lezioni di chimica del suolo c’è una parte del programma che riguarda la chimica dei colloidi. Ogni anno accademico, quando descrivo i colloidi del suolo, alleggerisco la lezione facendo esempi di sistemi colloidali nella vita di tutti i giorni discutendo, tra le altre cose, della schiuma del cappuccino.

Ma andiamo con ordine.

Cos’è un sistema colloidale?

Un sistema colloidale si definisce tale solo in base alle dimensioni delle particelle di soluto che lo costituiscono. Qui sotto una tabella in cui si riportano le dimensioni delle particelle di soluto che ci consentono di distinguere tra soluzioni vere, dispersioni colloidali e sospensioni solide

Sistemi chimici                Dimensioni delle particelle di soluto

Soluzioni vere                               < 2 x 10-9 m (ovvero < 2 nm)

Dispersioni colloidali                tra 2 x 10-9 e 2 x 10-6 m (cioè tra 2                                                                                nm e 2 μm)

Sospensioni solide                     > 2 x 10-6 m (ovvero > 2 μm)

Un sistema colloidale può essere del tipo liquido-solido (come, per esempio, nel caso della soluzione suolo in cui i minerali argillosi, delle dimensioni indicate in tabella, sono disperse nell’acqua dei suoli), liquido-liquido (come, per esempio, nel caso delle microgoccioline di olio disperse in acqua o della maionese), gas-liquido (come, per esempio, nel caso della panna montata,  dei gelati o del cappuccino, di cui si dirà fra poco) e gas-gas (come, per esempio, nel caso della dispersione di microgocce di acqua in aria così da costituire la nebbia).

Per convenzione si ritiene che una dispersione colloidale sia stabile quando il tempo di flocculazione è > 2 h, ovvero se ci vogliono più di due ore prima che cominci la flocculazione. Quest’ultima consiste nel processo di aggregazione delle diverse particelle colloidali che, dopo il raggiungimento di certe dimensioni limite, risentono più della forza di gravità che delle forze di dispersione. Nel caso di particelle colloidali cariche elettricamente, le forze di dispersione sono le repulsioni elettrostatiche e le dispersioni vengono indicate come elettrocratiche. Nel caso di soluti neutri, le forze di dispersione dipendono dalle interazioni soluto-solvente e le dispersioni vengono indicate come solventocratiche.

La schiuma del cappuccino

Alla luce delle poche cose scritte, si evince che la schiuma del cappuccino è una dispersione colloidale di un gas in un liquido. Il  liquido è il latte usato per il cappuccino, mentre il gas è costituito dall’aria e dal vapor d’acqua usati per montare il latte. Le goccioline di aria possono formare una dispersione colloidale nel latte grazie alla presenza in esso di surfattanti1, ovvero di molecole in grado di abbassare la tensione superficiale2 del liquido in cui esse sono presenti.  La caratteristica chimica più importante dei surfattanti è l’anfifilicità, ovvero la presenza nella struttura sia di gruppi idrofili che di gruppi idrofobi. Nel latte queste molecole sono le proteine (di cui le caseine rappresentano l’80% del totale proteico) ed i fosfolipidi (che mediamente sono lo 0.8% della massa grassa).

Quando il latte viene insufflato col vapore acqueo mediante l’utilizzo di una tipica macchina da bar (Figura 1), si forma una schiuma in cui goccioline di gas delle dimensioni comprese tra 2 nm e 2 μm sono disperse nel mezzo liquido.

Figura 1. Macchina da caffè per bar. In fondo a destra c’è il cannello usato per insufflare aria e vapore acqueo nel latte per la preparazione del cappuccino (Fonte)

La stabilità di questa schiuma dipende dalla concentrazione relativa di surfattanti. Più essa è elevata, più la schiuma è stabile, ovvero le goccioline di gas non si uniscono a formare gocce più grandi che si allontanano dalla bevanda3. È per questo motivo che più è bassa la concentrazione di grassi come i trigliceridi che non sono surfattanti e rappresentano circa il 90% della massa grassa del latte, e più persistente è la schiuma o “cappuccio” del caffé. Tuttavia, l’uso del latte scremato o parzialmente scremato produce un cappuccino non molto gustoso; è meglio usare un latte intero per avere una bevanda migliore in termini di sapore, sebbene con una schiuma meno persistente.

È importante la temperatura del latte?

Chi ha familiarità con la chimica, come i miei studenti, avrà sicuramente sentito dire che la solubilità di un gas in un liquido dipende sia dalla pressione esercitata dal gas sulla superficie del liquido che dalla temperatura.

Più alta è la pressione del gas sulla superficie del liquido, maggiore è la quantità di gas disciolta (Figura 2).

Figura 2. Più alta è la pressione del gas sulla superficie del liquido, maggiore è la quantità di gas disciolta in soluzione (Fonte)

All’aumentare della temperatura la quantità di gas disciolto in un liquido diminuisce (Figura 3).

Figura 3. Dipendenza della solubilità di un gas dalla temperatura (Fonte)

Alla luce di quanto appena scritto, appare chiaro che per avere una schiuma consistente per il cappuccino occorre sciogliere quanto più gas possibile. Questo si può realizzare se il latte viene preso direttamente dal frigorifero e se il bricco entro cui si prepara la schiuma è freddo.

Quanto appena scritto è la lezione di chimica del cappuccino che faccio ad ogni barista nuovo che si mette dietro al bancone nel bar di fronte al mio dipartimento. Lo so, sembro arrogante, ma ci tengo a bere un buon cappuccino la mattina. Il latte e caffè me lo faccio da solo a casa e non ho bisogno del bar per questo. Buon cappuccino a tutti

Note
  1. Per quei chimici che hanno il vezzo del purismo della lingua italiana: il termine “surfattante”, anche se non piace, esiste nel dizionario di italiano ed è sinonimo di “tensioattivo”. Esso è entrato nell’uso comune e non è più da considerarsi errore o cattiva traduzione dell’inglese surfactant che è l’acronimo di surface active agent. (Surfattante nel dizionario Treccani)
  2. La locuzione “tensione superficiale” si riferisce alle forze di coesione che, all’interfaccia liquido-gas, tengono unite le molecole del liquido alla superficie del liquido stesso. In termini quantitativi, la tensione superficiale è la forza necessaria a tener uniti i lembi di un ipotetico taglio fatto sulla superficie del liquido. All’aumentare della temperatura, le forze di coesione che tengono unite le molecole alla superficie del liquido diminuiscono di intensità e la tensione superficiale diminuisce.
  3. Le microparticelle di soluto tendono ad unirsi ed a formare aggregati a dimensione progressivamente maggiore per diminuire l’area superficiale a contatto col mezzo liquido in cui esse sono insolubili. Per questo motivo, nel tempo, tutte le dispersioni colloidali tendono a subire una separazione di fase: le emulsioni olio-acqua tendono a formare una fase acquosa sul fondo ed una fase organica sulla superficie; la maionese tende a formare uno strato di olio superficiale per effetto della separazione di quest’ultimo dalla fase acquosa; le sostanze umiche (acidi umici, fulvici ed umina) tendono ad aggregarsi ed a flocculare;  etc etc.
Per saperne di più

I colloidi in breve 1

I colloidi in breve 2

Una lezione sui colloidi

Breve lezione sui tensioattivi

Un’altra lezione sui tensioattivi

La composizione dei grassi nel latte

Le proteine del latte

Il latte migliore per i cappuccini

Fonte dell’immagine di copertina: By Scoti5 – Originally from he.wikipedia; description page is/was here., Attribution, https://commons.wikimedia.org/w/index.php?curid=2710311

Share