Critica alle critiche. Un errore comune nel processo di debunk

Il processo di debunk è estremamente importante in questa epoca famosa per la post-truth. Tutti possono scrivere in rete e tanti si inventano notizie per acchiappare click e guadagnare con la pubblicità. Molti sono, però, in cerca di notorietà per soddisfare il proprio egocentrismo. Tra questi anche molti studiosi che utilizzano questa notorietà per reperire fondi per portare avanti ricerche piuttosto improbabili. Ed ecco che così nascono e si diffondono movimenti a favore dell’omeopatia (che altro non è che un approccio magico alla risoluzione di problem di salute) e movimenti antivaccinisti (che, utilizzando paure ataviche ed ingiustificate, non fanno altro che aprire la strada a patologie che solo apparentemente sembrano innocue o debellate).

Ben vengano allora blogger, youtuber ed altri personaggi che dal mondo scientifico si immettono nella divulgazione per contrastare in modo corretto, con informazioni di prima mano, l’onda antiscientifica. Leggo sempre con piacere la competenza con cui i debunker (nome corretto di chi lotta contro I movimenti antiscientifici) affrontano i “fuffari” in rete.

Nei giorni passati ho letto con enorme interesse un articolo scritto dal Dr. Salvo Di Grazia conosciuto in rete come MedBunker. È a questo link.

Nel suo lavoro, MedBunker affronta con competenza e cognizione di causa i problemi legati all’intervista rilasciata dalla Dr.ssa Gatti nel servizio della trasmissione Report in merito ai vaccini.

MedBunker ci fa capire come le affermazioni fatte dalla Dott.ssa Gatti in merito alle nanoparticelle nei vaccini siano infondate. Lo fa in modo molto semplice.

Tanto per capire di cosa si parla, le nanoparticelle sono sistemi solidi dispersi in un mezzo qualsiasi e si distinguono, solo ed esclusivamente, per le loro dimensioni. Il suffisso “nano”, infatti, significa 10-9, ovvero 1/1000000000. Anteporre il suffisso “nano” alla parola “particella” significa solo dire che si stanno prendendo in considerazione sistemi solidi le cui dimensioni ricadono nell’ordine del miliardesimo di metro. In altre parole, le nanoparticelle possono essere di ogni tipo. Esistono nanoparticelle di origine organica, come nanoparticelle di origine inorganica.

Quando insegno la chimica del suolo, evidenzio che sistemi chimici che hanno le dimensioni anzidette e che sono disperse nella fase acquosa dei suoli, costituiscono quelli che vengono indicati come “colloidi del suolo”. I minerali argillosi e la sostanza organica naturale sono i due tipici esempi di “nanoparticelle” (i primi di origine inorganica, la seconda di origine organica) presenti in natura.

MedBunker ha ragione. Le nanoparticelle sono ovunque. Sono tossiche? Dobbiamo averne paura? Certamente no. La tossicità di un sistema chimico (qualunque sia la sua dimensione) dipende da tanti fattori tra cui, non ultimo e molto importante, la concentrazione. È la dose che fa il veleno come ci ha insegnato Paracelso. Tuttavia non voglio scrivere un trattato di tossicologia chimica.

In questa sede voglio centrare la mia attenzione su quello che io reputo un errore sempre più frequente nei processi di debunk e che potrebbe, a mio avviso, spuntare le armi che abbiamo a disposizione per contrastare il proliferare di sciocchezze on-line. Prendo ad esempio MedBunker solo perché è l’ultimo degli articoli in cui ho notato questo errore. Non me ne voglia Salvo Di Grazia se uso il suo lavoro per scrivere questa nota. La stessa tipologia di errore l’ho trovata ovunque, anche nelle discussioni interminabili nei vari siti di debunk che gestisco in rete.

MedBunker, dopo aver smontato le argomentazioni della Dottoressa Gatti in merito alle nanoparticelle nei vaccini, scrive:

Il suo microscopio ha trovato migliaia di nanoparticelle in flaconi di vaccino. Prima lo ha fatto sapere tramite internet e poi con un libro, edito da Macrolibrarsi, casa editrice specializzata in libri sui misteri, sugli UFO e sui poteri paranormali. Ma in effetti non era sufficiente e tutti le chiedevano a gran voce di pubblicare (come dovrebbe fare qualsiasi scienziato) in una rivista scientifica, non ci pensa due volte ed in effetti lo faPeccato che la rivista scientifica che ha scelto è praticamente sconosciuta, non ha nemmeno un “impact factor” (fattore d’impatto, misura l’importanza di una rivista scientifica) ed il suo editore, Medcrave, è noto per essere un “predatory journal“, cioè un editore che accetta qualsiasi cosa, dallo studio vero a quello falso o stupido, dietro pagamento, protagonista persino di un editoriale del BMJ sulle mail indesiderate, lo spam, che arriva ai ricercatori con la richiesta di pubblicare qualcosa“.

Era proprio necessario invocare i “predatory journals”? Era proprio necessario evidenziare che il giornale scelto dalla Dottoressa Gatti è privo di impact factor?

Come probabilmente è noto, sono nel mondo scientifico da quasi una trentina di anni. In tutti questi anni ho operato come peer reviewer (ovvero revisore scientifico) per tantissime riviste. Da Nature a Ciencia Rural, la prima con impact factor altissimo, la seconda con impact factor molto basso, ma egualmente dignitosa e piena di lavori estremamente interessanti. Ho operato come revisore scientifico per riviste appena nate prive, per questo motivo, di impact factor e per riviste che nel tempo non hanno mai avuto un impact factor. Ebbene sì, per essere indicizzati ed avere un IF bisogna affidarsi alla Thomson Reuters, agenzia privata, oggi proprietà della Clarivate Analytics,  che chiede un “obolo” che non tutti sono in grado di/o vogliono pagare. In alternativa indicizzazioni gratis si possono ottenere mediante altre agenzie come Google Scholar, Scopus, ResearchGate ed oltre. Spuntano agenzie di rating bibliografico ogni momento. Non è detto che una rivista indicizzata con Google Scholar, Scopus o altro, sia indicizzata anche dalla Thomson Reuters. Ed in ogni caso, quale indice è quello più qualificato? Chi decide quale parametro bibliometrico è migliore? In ambito accademico e per il mio settore disciplinare, per esempio, si è deciso arbitrariamente che Thomson Reuters e Scopus debbano essere le uniche agenzie da considerare per il superamento dell’abilitazione scientifica nazionale. Altri settori possono decidere altrimenti. Molti colleghi decidono arbitrariamente che il loro indice di Hirsch (o h-index, un parametro quantitativo che misura l’impatto che il singolo scienziato ha sulla sua comunità di riferimento) debba essere quello di Google Scholar perché questo motore è in grado di indicizzare molto di più rispetto ai motori precedentemente citati. Io stesso per esempio ho un h-index che varia in funzione del motore di ricerca presso cui i miei lavori sono indicizzati. Un motore di ricerca che indicizza un numero di lavori inferiore ad un altro, produrrà un h-index inferiore perché, gioco forza, non può prendere in considerazione le citazioni dei lavori che non è in grado di indicizzare. Non si possono mettere nel computo “oggetti” che, di fatto, per quel motore non esistono.

Lo stesso dicasi per quanto riguarda l’impact factor delle riviste di cui ha parlato MedBunker nel sua articolo. Ci sono riviste indicizzate un po’ ovunque e non sempre l’IF elaborato dai diversi database coincide.

È vero. Ci sono riviste “predatorie” che pubblicherebbero di tutto pur di battere cassa. Ma è altrettanto vero che il giudizio che un peer reviewer elabora su uno specifico articolo è indipendente da tutti i parametri quantitativi precedentemente citati. Ogni reviewer (revisore) valuta il merito del lavoro che è chiamato a giudicare. Non si possono certo replicare in laboratorio gli esperimenti di cui si legge in un lavoro (è impossibile e un revisore avrebbe bisogno di fondi e personale in gran quantità pe replicare gli esperimenti di altri). Si valuta la congruenza tra il disegno sperimentale, i dati ottenuti e le conclusioni elaborate. Se c’è congruenza, il lavoro passa e viene pubblicato. Se non c’è congruenza, il lavoro viene rifiutato o accettato con major/minor revisions, ovvero si chiede all’autore (autori) di rivedere il lavoro e la procedura sperimentale perché sono state notate delle fallacie.

In modo oggettivo MedBunker evidenzia che il lavoro della Dr.ssa Gatti è stato preso in considerazione nel merito da qualcun altro. Ed è ciò che, secondo me, deve essere l’unica cosa da prendere in considerazione: tutto il resto non conta. Che la casa editrice sia “predatoria”, che la rivista non sia “impattata” non sono argomentazioni da prendere in considerazione. Ciò che va evidenziato è l’incongruenza del disegno sperimentale rispetto ai dati prodotti ed alle conclusioni raggiunte. Nient’altro. Il lavoro è stato pubblicato. È stato oggetto di revisione? Sì. Allora bene. La revisione non è stata assegnata a “giudici” esperti. Questo deve essere segnalato alla rivista che prenderà, poi, le opportune decisioni. È così che, a mio avviso, si cresce. Non puntando il dito contro il contenitore per evidenziare le mancanze del contenuto.

In merito alle riviste predatorie ed al perché su di esse molti autori Italiani inviino i loro prodotti, nonché i limiti dei database che indicizzano le riviste predatorie, si trova qualcosa a questo link o a quest’altro.

Fonte dell’immagine di copertina: http://www.metropolitanrisk.com/about-us/our-blog/7-common-commercial-insurance-myths

Medicina e pseudoscienza. Considerazioni e note

Medicina e pseudoscienza.
La salute tra scienza e falsi miti nell’era 2.0
“.

È stato un convegno molto interessante e particolarmente istruttivo. Si sono ritrovati a Roma, nella sala convegni dell’Ergife Palace Hotel dal 7 all’8 Aprile 2017, medici, psicologi, chimici e divulgatori scientifici di varia estrazione culturale per fare il punto della situazione sul livello della comunicazione scientifica nell’era della post-verità. Oggi più che mai si sente la necessità di scendere dai propri scranni – una volta si sarebbe detto “uscire dalla torre eburnea” – per informare, al di fuori delle aule universitarie, l’intera comunità in merito al progresso a cui siamo arrivati per la salvaguardia della salute pubblica. Oggi, come un secolo fa, impazzano maghi, imbonitori e ciarlatani. Questi, sfruttando la buona fede delle persone, fanno circolare informazioni perniciose e fuorvianti in merito all’efficacia di farmaci e cure per malattie più o meno invalidanti. Il loro solo scopo è quello di vendere i propri rimedi universali a prezzi esorbitanti per arricchirsi mediante lo sfruttamento della disperazione di amici, parenti e familiari di persone affette da patologie attualmente incurabili e particolarmente dolorose. Fino ad ora gli esponenti del mondo scientifico avevano deciso di non scendere “in singolar tenzone” contro antivaccinisti, omeopati, venditori di fumo convinti che la “verità” si facesse strada da sola nelle menti delle persone; ma soprattutto convinti che la propria attività scientifica fosse molto più importante che scendere in strada a conversare col “volgo”: “faccio grandi scoperte che mi porteranno gloria e fama. Il popolo comune mi dovrà ringraziare per i miei sforzi”; ecco quello che, più o meno velatamente, tutti abbiamo pensato.
Purtroppo non funziona così.
Attualmente le fonti di informazione sono molteplici; non ci sono più solo le aule universitarie a cui possono accedere potenzialmente tutti, ma che sono aperte, praticamente, solo a chi se lo può permettere.

Il ruolo della rete

Oggi la rete è quella che corrisponde all’enciclopedia Britannica di quando ero piccolo. Anzi, sotto il profilo economico, la rete internet è anche migliore dell’enciclopedia Britannica perché più accessibile. Mentre scienziati e tecnici erano impegnati a discutere tra loro e produrre informazione su riviste tecniche non accessibili a tutti, i venditori di olio di serpente accedevano alla rete ed occupavano gli enormi spazi che gli scienziati avevano lasciato liberi nell’assurda convinzione che le cose si sarebbero “aggiustate” da sole. Il risultato è stato il proliferare di teorie astruse come quelle sulla terra piatta, l’antivaccinismo e l’omeopatia, solo per citarne alcune. Ma se la terra piatta può essere considerata una nota di colore nell’enorme autostrada dell’idiozia umana, antivaccinismo, omeopatia, teorie anti-chemioterapiche etc. non sono così innocue. I disperati, quelli che hanno ingiustificate paure ataviche, coloro che hanno timore delle responsabilità, possono “attaccarsi” alle forme più disparate di antiscientificità e diffondere informazioni sbagliate col rischio di sottrarsi alle cure efficaci o promuovere il ritorno di epidemie di patologie erroneamente ritenute scomparse. È notizia dell’ultima ora, per esempio, che gli Stati Uniti considerano l’Italia un paese a rischio a causa della progressiva riduzione vaccinale che sta facendo aumentare il numero di casi di morbillo nella popolazione. Pur essendo noi nell’Europa avanzata tecnologicamente, siamo considerati come un paese in via di sviluppo. E questo grazie alla capacità imbonitrice di maghi e fattucchieri ed alla “ignavia” di chi ha sempre considerato la comunicazione divulgativa non importante nel panorama della propria attività scientifica.

TIPPING POINT

Il convegno organizzato dalla C1V edizioni è stato un punto di svolta.

Ha evidenziato tutte le carenze attualmente presenti nel mondo scientifico in merito alla comunicazione di massa ed ha puntualizzato che occorrerebbero strumenti migliori di quelli attuali per contrastare l’antiscientificità dilagante. Quali? Per esempio l’apertura di corsi universitari dedicati alla comunicazione scientifica. Non basta essere ottimi ricercatori per saper comunicare, così come non basta essere ottimi divulgatori per saper fare ricerca. Occorrono figure intermedie; figure multilingue, ovvero che siano in grado di comprendere sia il linguaggio ipertecnico degli scienziati che quello più popolare delle persone comuni che, col loro contributo, permettono il lavoro dei tanti, sebbene ancora troppo pochi, impegnati nella ricerca e nello sviluppo della conoscenza. Non è più il tempo dei cavalieri solitari che partono lancia in resta ed affrontano i pericoli da soli; non è più il tempo di far combattere battaglie epiche ed epocali a persone solitarie; persone come Piero Angela hanno fatto scuola; hanno aperto la strada. Ora tocca a tutti noi, coinvolti più o meno approfonditamente nello sviluppo della ricerca scientifica, scendere in strada e far capire che non siamo novelli Frankenstein, non siamo mostri che vogliono assoggettare il mondo ai propri desideri, ma solo persone che, per più o meno ottimi motivi, hanno solo il desiderio di far progredire l’umanità.

L’omeopatia. Una pratica esoterica senza fondamenti scientifici

OMEOPATIA: Il contesto storico

Il 10 (o l’11, non si sa bene) Aprile 1755 nasce a Meißen, in Germania, Samuel Hahnemann. Non tutti sanno di chi si tratti, ma basta una veloce ricerca in rete per scoprire che Samuel Hahnemann è colui che ha inventato l’omeopatia.

La seconda metà del Settecento e tutto l’Ottocento hanno visto progressi scientifici e tecnologici senza pari; basti pensare che tra il 1777 ed il 1778 Lavoisier scopre il ruolo dell’ossigeno nella combustione e nella respirazione animale[1]; tra il 1773 ed il 1780 Priestley scopre il ruolo delle piante nel purificare l’aria contaminata da anidride carbonica[1]; nel 1775 Cavendish propone un esperimento per misurare la densità della Terra mentre nel 1784 scopre la composizione precisa dell’aria oltre a proporre una sintesi dell’acqua[1]; nel 1783 i fratelli Montgolfier realizzano il sogno dell’uomo: il volo con la mongolfiera[2]; nel 1800 Volta scopre la pila[3]; tra il 1802 ed il 1810, Dalton enuncia la legge delle proporzioni multiple, la legge delle pressioni parziali ed introduce la teoria atomica[1]; nel 1803 Berthollet dimostra “che il risultato di una trasformazione chimica è modificato dalle proporzioni relative delle sostanze messe a reagire, e dalle condizioni fisiche – temperatura, pressione, ecc. – in cui essa avviene”[1]; nel 1804 Trevithick inventa la locomotiva a vapore su rotaia[4]; tra il 1803 ed il 1824, Berzelius scopre il cerio, il selenio, il torio, isola il silicio, lo zirconio ed il tantalio e studia i composti del vanadio, oltre a formulare per primo la teoria dell’isomerismo[1]; nel 1828, Wöhler per primo dimostra come un composto organico, ovvero un composto implicato nella vita, possa essere ottenuto dalla reazione di due composti inorganici, ovvero non coinvolti nei processi vitali, contribuendo ad abbattere la teoria della “vis vitalis”[5] proposta dal suo maestro Berzelius[1]; tra il 1814 ed il 1841 Avogadro pubblica i suoi lavori in cui dimostra che “volumi uguali di gas diversi, alla stessa temperatura e pressione, contengono lo stesso numero di molecole”[6], oltre ad elaborare teorie sulla densità dei gas e la costituzione della materia[1]; nel 1847, Semmelweis intuisce le cause della febbre puerperale e propone l’uso dell’ipoclorito di sodio per la disinfezione delle mani dei medici impegnati tra i reparti di ostetricia e di medicina legale[7]; intorno al 1860, Cannizzaro contribuisce a rafforzare le ipotesi di Avogadro, scopre che l’idrogeno è una molecola biatomica e pubblica la reazione di dismutazione della benzaldeide che oggi è conosciuta come reazione di Cannizzaro[1].

Dettagli molto più approfonditi e di carattere didattico sulla storia della scienza possono essere trovati sia nel riferimento [1] che nei riferimenti [8], [9], [10] e [11].

In pratica, il periodo in cui Hahnemann svolge la sua attività di medico vede la nascita e lo sviluppo di teorie più o meno note, oggi ancora valide, molte attualmente inglobate in modelli di carattere più generale, altre del tutto scomparse. Tra queste ultime ricordiamo la teoria della “vis vitalis”[5], elaborata da Berzelius, con la quale si tentava di spiegare l’origine della vita e la teoria della generazione spontanea[12] che, nella prima metà del 1800, era sostenuta ancora da personalità come de Lamarck e Saint-Hilaire. Queste erano teorie valide nel contesto storico in cui furono sviluppate quando ancora non si sapeva dell’esistenza di forme di vita microscopiche e non si disponeva degli strumenti adatti per poterle riconoscere.

La medicina era ancora agli albori come scienza e si basava essenzialmente sul fatto che le malattie erano intese come alterazioni degli equilibri tra i quattro umori (sangue, flemma, bile nera e bile gialla) e le quattro condizioni fisiche (caldo, freddo, umido e secco)[13]. Il ritorno all’equilibrio poteva essere assicurato solo attraverso pratiche che oggi noi chiameremmo magiche: purghe, unguenti, emetici e salassi.

Era anche il tempo in cui il metodo scientifico, basato sulla sperimentazione e la riproducibilità, veniva ampiamente applicato in molti rami della scienza sebbene, molte volte, con estrema rudimentalità (sia di esempio la storia di Semmelweis ostracizzato dalla comunità medica a causa delle sue osservazioni sperimentali[7]). Ed è stato proprio l’applicazione di un rudimentale metodo scientifico a portare Hahnemann all’elaborazione di quella che è indicata come “medicina omeopatica”.

Le origini dell’omeopatia

Nel tentativo di spiegare il significato di “malattia” e di “cura della malattia” in modo più efficace rispetto agli inefficienti riti magici che prevedevano purghe, unguenti, emetici e salassi, Hahnemann rielabora la teoria della “vis vitalis”[5] introducendo il concetto di malattia intesa come una alterazione dello stato di salute causato da un “miasma”[14]. Quest’ultimo viene considerato come una esalazione che altera il funzionamento della “vis vitalis” e, di conseguenza, le proprietà dell’organismo. Quando l’organismo tenta di opporsi spontaneamente all’aggressione del “miasma”, ottiene solo l’incremento della patologia. In altre parole, il “miasma” si identifica con una condizione progressivamente peggiorativa, non risolvibile spontaneamente, dello stato di salute [14]. Il “miasma”, inoltre, non agisce allo stesso modo su tutti gli organismi. Individui diversi sviluppano un tipo di malattia il cui percorso dipende dal loro personale modo di essere. In altre parole, la malattia è indipendente dall’ambiente e relativo invece alla costituzione interna dell’individuo. Da ciò nasce la necessità della cura soggettiva, non valida per tutti, individuata solo attraverso una indagine “olistica” che tenga conto dell’interazione della “vis vitalis” con tutte le componenti dell’organismo malato.

A una tale conclusione Hahnemann giunge applicando su se stesso il metodo scientifico basato sulle osservazioni sperimentali. Infatti, per capire in che modo la corteccia dell’albero della china agisse nel riordinare il flusso della “vis vitalis” nell’organismo ammalato di malaria, egli si sottopone (da sano) ad una cura che prevede dosi progressivamente più elevate della predetta corteccia. All’aumentare delle dosi, Hahnemann osserva sintomi del tutto simili a quelli della malaria: debolezza, brividi e febbre[13]. Quindi, se un individuo sano, che assume un dato rimedio, rivela i sintomi della malattia che viene debellata quando lo stesso rimedio è assunto da un individuo malato, ne viene che il modo migliore per eliminare le cause dell’alterazione alla “vis vitalis”, riportando l’organismo alle sue funzioni originali, è quello del “chiodo scaccia chiodo”, ovvero il rimedio deve indurre la stessa malattia che si intende sconfiggere. Da qui il termine “omeopatia” per indicare “il simile cura il simile” contrapposto ad “allopatia” in cui la malattia viene combattuta con rimedi che si oppongono alla stessa. Inoltre, Hahnemann suggerisce che più bassa è la concentrazione del principio che viene assunto dal malato e migliore è la sua efficacia, contravvenendo a quelli che erano i principi basilari della farmacologia ben noti anche nel suo tempo[13].
In particolare, egli suggerisce che per “attivare” la “vis vitalis” del rimedio è necessario effettuare diluizioni successive utilizzando il metodo della “succussione”, ovvero lo scuotimento sistematico delle miscele seguendo dei criteri che oggi definiremmo magici[13].

Il falso mito del riduzionismo scientifico

Oggi sappiamo che uno dei ruoli svolto dalla ventina di molecole ad azione antimalarica nella corteccia dell’albero della china è quello di inibire la sintesi di un enzima coinvolto nei processi di detossificazione del gruppo eme che si ottiene per effetto della “digestione” dell’emoglobina da parte dei parassiti che inducono la malaria. Infatti, il gruppo eme è tossico per questi parassiti. Essi dispongono di un enzima che distrugge l’eme rendendolo innocuo. Gli alcaloidi della corteccia dell’albero della china impediscono l’azione del predetto enzima e consentono all’eme di agire contro i parassiti stessi. Dettagli e meccanismi di azione dei diversi alcaloidi antimalarici si possono trovare in un documento word scaricabile qui.

La conoscenza del meccanismo di azione degli alcaloidi della corteccia della china è stata resa possibile da un approccio riduzionista, ovvero dalla considerazione che un qualsiasi complesso chimico (dalla roccia, ad un organismo monocellulare, fino all’uomo) è fatto dall’interazione di tante parti ognuna della quali ha una ben precisa funzione. Quindi, se vogliamo sapere come funziona un determinato metabolita, innanzitutto dobbiamo isolarlo e purificarlo. Una volta purificato ne individuiamo la struttura e ne comprendiamo il ruolo biologico sulla base del principio di relazione tra struttura chimica ed attività biologica: una molecola che ha una certa struttura chimica ha solo quella particolare funzione biologica. Una qualsiasi variazione strutturale (per esempio un cambiamento di isomeria) altera la funzione biologica della molecola che, di conseguenza, non è più in grado di assolvere al suo ruolo nell’organismo.

Solo chi non è troppo addentro a fatti scientifici, come spesso capita quando si interloquisce con pseudo filosofi che pensano di conoscere il mondo meglio di chiunque altro, ritiene che i processi di riduzione di un complesso alle sue componenti sia perdere di vista l’organismo in tutta la sua complessità. Le argomentazioni “olistiche” sostenute dai fautori dell’omeopatia si possono riassumere nella banale affermazione che le proprietà di un organismo vivente non sono date dalla somma delle singole componenti che lo caratterizzano, ma sono qualcosa di più. In altre parole, ancora più banalmente, secondo i fautori dell’omeopatia è sempre valida la regola che 2 + 2 > 4 (Figura 1).
Questa è una fallacia logica (oltre che ignoranza scientifica) che può essere confutata molto semplicemente facendo l’esempio dello studio delle proprietà dell’acqua.

Figura 1. Schema comparativo tra il metodo applicato dai fautori dell’omeopatia ed il metodo scientifico. Senza alcuna conoscenza di base, le proprietà dei sistemi complessi sembrano inconciliabili con le proprietà delle singole componenti. Il risultato sembra, quindi, che 2+2=10. In realtà, l’approfondimento delle proprietà chimico fisiche delle singole componenti, consente di spiegare le proprietà emergenti dalle interazioni tra singole molecole di acqua (ovvero, per es., che il ghiaccio galleggia sull’acqua liquida) che non sono racchiuse in nessuna delle singole componenti che contraddistingue la molecola. In definitiva, ogni singolo step conoscitivo corrisponde all’operazione (2 + 2 = 4). La somma totale delle conoscenze dà il risultato corretto di 10.

L’acqua è una molecola di formula H2O, ovvero è costituita da idrogeno ed ossigeno nel rapporto 2 : 1. L’idrogeno è un elemento della tavola periodica con numero atomico 1 e peso atomico di circa 1 u.m.a. (unità di massa atomica), l’ossigeno ha numero atomico 8 e peso atomico di circa 16 u.m.a. Queste informazioni, pur essendo basilari, non ci dicono assolutamente nulla in merito al ruolo svolto da idrogeno ed ossigeno nel modulare le proprietà dell’acqua. Per poter capire nei minimi dettagli il comportamento dell’acqua, abbiamo bisogno di un grado di conoscenza ulteriore. In altre parole abbiamo bisogno di sapere in che modo idrogeno ed ossigeno interagiscono tra loro. Per poterlo sapere abbiamo bisogno di introdurre gli orbitali atomici che si combinano a formare gli orbitali molecolari. Non è questa la sede per andare troppo nei dettagli.
Basti sapere che l’utilizzo del formalismo degli orbitali molecolari consente di capire che la molecola dell’acqua ha una struttura tetraedrica in cui due vertici sono occupati dai due atomi di idrogeno ed altri due dai doppietti solitari dell’ossigeno. Il centro del tetraedro è occupato dall’ossigeno. Queste informazioni non sono ancora sufficienti a capire perché l’acqua ha il comportamento che noi conosciamo, ovvero perché il ghiaccio galleggia e perché il volume dell’acqua aumenta quando la temperatura scende intorno ai 4 °C. Il gradino di conoscenze successivo consiste nel capire in che modo le diverse molecole di acqua interagiscono tra di loro. Senza utilizzare troppi dettagli, si può dire che le molecole di acqua, ognuna occupante una certa porzione di spazio tridimensionale, si legano tra loro mediante legami ad idrogeno in modo tale da formare dei “clusters” (ovvero gruppi di molecole) fatti da tetraedri in cui una molecola di acqua centrale lega altre quattro molecole di acqua (via legami a idrogeno) disposte lungo i vertici di un tetraedro. Bastano queste informazioni a spiegare perché il ghiaccio galleggia? Non ancora. Abbiamo bisogno di un andare un gradino oltre le nostre conoscenze. Per poter spiegare la più bassa densità del ghiaccio rispetto all’acqua liquida, abbiamo bisogno di sapere quali sono le peculiarità del legame a idrogeno. Affinché un legame a idrogeno si possa formare, devono essere rispettati sia dei requisiti energetici che dei requisiti geometrici. Questi ultimi consistono nel fatto che il legame O-H (legame covalente) in una molecola di acqua deve essere allineato col legame H…O (legame a idrogeno) a formare un unico asse (geometria lineare del legame a idrogeno)[15]. Quando l’acqua si raffredda, la geometria lineare si deve conservare. Questo implica che le diverse molecole di acqua si dispongono in posizioni ben precise allontanandosi le une dalle altre ed aumentando, di conseguenza, lo spazio tra di esse con diminuzione della densità. Il risultato finale di tutta questa conoscenza è che il ghiaccio galleggia sull’acqua liquida e, per questo, nel 1912 il Titanic[16], non potendo violare il principio di incompenetrabilità dei corpi[17], è affondato.

Come si evince dalla complessa spiegazione appena riportata (schematizzata nella Figura 1), da nessuna parte del ragionamento basato su modelli scientifici è riportato che 2 + 2 è diverso da 4. Anzi, le proprietà dell’acqua solo apparentemente sembrano essere un miracolo. Esse non sono altro che il risultato emergente dalla complessità delle proprietà chimico fisiche delle singole componenti della molecola in cui ogni livello di conoscenza corrisponde alla semplice operazione matematica (2 + 2 = 4). È l’assenza di conoscenze, associata alla convinzione che le spiegazioni scientifiche siano intuitive (mentre tutte le spiegazioni scientifiche sono contro intuitive), a generare i mostri pseudo scientifici che nella fattispecie si identificano con l’omeopatia.

Il falso mito della memoria dell’acqua

Non è un caso che l’acqua sia stata usata come esempio per evidenziare le fallacie cognitive di chi pensa che l’omeopatia sia la panacea di ogni male. Attualmente, non essendo più sostenibile la concezione di “vis vitalis”, i supporters dell’omeopatia si aggrappano all’idea che la struttura dell’acqua sia come un materasso memory-foam. In pratica, sulla base di lavori scientifici di cui si è dimostrata l’inconsistenza[18], viene affermato che la validità dell’omeopatia risiede nel fatto che la struttura dei “clusters” dell’acqua è modificata dalla presenza del principio attivo. L’impronta del principio attivo rimane inalterata nei processi di diluizione. L’alterazione della struttura dei “clusters” indurrebbe delle variazioni nei campi elettromagnetici generati dagli elementi che compongono l’acqua. Sono questi campi elettromagnetici che indurrebbero il processo di guarigione dell’organismo malato[18]. A parte l’inconsistenza scientifica delle affermazioni anzidette (nessuna di esse è mai stata provata), proviamo a ragionare sulle alterazioni dei campi elettromagnetici.

Una tecnica analitica molto nota in chimica è la risonanza magnetica nucleare[19]. Essa si basa sull’alterazione delle caratteristiche fisiche dei nuclei presenti nelle molecole grazie all’applicazione di campi magnetici aventi ben precise intensità. Senza entrare troppo nei dettagli che sono oltre gli scopi di questa nota, basti sapere che l’uso dei campi magnetici ad intensità variabile consente di monitorare la dinamica (ovvero il movimento) delle molecole di acqua in tutte le condizioni. Chi volesse approfondire può far riferimento ad un lavoro pubblicato su eMagRes nel riferimento [20]. Se i “clusters” dell’acqua fossero come i materassi memory-foam, ovvero se la rete tridimensionale di legami a idrogeno fosse modificata dall’impronta del principio attivo, ci dovremmo aspettare dinamiche differenti delle molecole di acqua soggette alle deformazioni anzidette. Queste dinamiche si dovrebbero riflettere sulla velocità con cui un nucleo (nella fattispecie quelli degli atomi di idrogeno dell’acqua) cede la sua energia per effetto dell’interazione con i campi magnetici ad intensità variabile. Ed invece il modello matematico che descrive la velocità appena citata e riportato nel riferimento [21] indica chiaramente che al tendere a zero della concentrazione di soluto (ovvero di un qualsiasi composto disciolto in acqua), l’acqua si comporta esattamente come se non avesse mai contenuto alcun soluto. Non c’è alcuna traccia della memory-foam, ovvero dell’impronta lasciata dal soluto nella rete tridimensionale dei legami a idrogeno. Questa riportata è solo una delle tante prove contro la memoria dell’acqua. Molte altre se ne possono trovare in letteratura e molti lavori pubblicati evidenziano gli errori commessi negli esperimenti a supporto della fantomatica memoria dell’acqua[18]. Da dove nasce la fama della memoria dell’acqua? Dal fatto che l’industria omeopatica è molto remunerativa: i formulati omeopatici costano parecchio e possono essere considerati a ragion veduta un vero e proprio lusso. Individuare una pseudo spiegazione scientifica aiuta molto nel marketing e nella vendita di prodotti omeopatici incrementando, in questo modo, l’indotto economico e l’arricchimento di gente senza scrupoli che sfrutta la credulità della gente. Inoltre, la pseudo spiegazione ammanta di scientificità qualcosa che scientifico non è, mettendo in pace l’animo delle persone che temono le proprie paure e hanno necessità di rivolgersi all’omeopatia. A nulla vale l’avvertimento in base al quale un formulato omeopatico funziona meglio se si fa una vita sana. Se si fa una vita sana, ovvero alimentazione corretta senza eccessi e sana attività fisica, non c’è bisogno né di medicinali veri e propri né di formulati omeopatici. Neanche vale dire che in caso di malattia conclamata il formulato omeopatico coadiuva le cure più tradizionali dall’efficacia acclarata. Lavori di letteratura dimostrano chiaramente che l’attività dei formulati omeopatici è del tutto simile al placebo[22] per cui, a parte influenzare l’approccio psicologico del paziente con la malattia, non hanno alcuna utilità medica.

Il falso mito dei miliardi di molecole nelle preparazioni omeopatiche

Ho già avuto modo di scrivere in merito al mito secondo cui i preparati omeopatici sono efficaci perché conterrebbero ancora miliardi di molecole di principio attivo[23]. Tuttavia, come dicevano i nostri antenati “repetita iuvant”. Innanzitutto, l’affermazione secondo cui in un formulato omeopatico si “agitano” miliardi di molecole fa un poco a pugni sia con la presunta memoria dell’acqua che col fatto che un prodotto omeopatico non è considerato un farmaco vero e proprio. Forse chi fa questa affermazione non si rende neanche conto che contraddice se stesso. Se il formulato omeopatico contiene miliardi di molecole di principio attivo, allora, secondo chi afferma ciò, la sua presunta efficacia è dovuta al fatto che può essere considerato alla stregua di un farmaco vero e proprio. E se è così, perché i formulati omeopatici non sono soggetti alla stessa legislazione (nazionale ed internazionale) dei farmaci veri e propri secondo cui prima di essere immessi nel mercato essi devono superare dei test molto stringenti in merito alla loro tossicità? Se l’attività dei formulati omeopatici è dovuta alla presunta presenza di miliardi di molecole, perché c’è bisogno di trovare una spiegazione scientifica in merito alla memoria dell’acqua dal momento che sono i miliardi di molecole ancora presenti ad avere una qualche attività?

Ma veniamo al punto. Chi afferma che nei formulati omeopatici ci sono miliardi di molecole che si agitano, non dice una sciocchezza vera e propria. Sta semplicemente usando una parte dei fatti rigirandoli a proprio uso e consumo secondo delle abitudini che sono consolidate e riconosciute. In ambito scientifico si parla di “cherry picking”, ovvero, tra tutto ciò che mi serve, prendo solo le informazioni che fanno comodo al mio caso e mi consentono di avallare le mie idee. Si chiama anche “bias cognitivo”. Si tratta della nostra predisposizione a voler prendere in considerazione solo ed esclusivamente ciò di cui siamo già convinti. Questi sono errori in cui possono incorrere tutti. Tuttavia, chi si occupa di scienza è, in genere, più allenato delle persone comuni, che non hanno basi scientifiche, e sanno riconoscere, per lo più, queste fallacie. Ai fini esemplificativi sono costretto ad entrare in alcuni tecnicismi che spero di spiegare nel modo più semplice possibile senza appesantire un discorso già pesante e tecnico di suo.

Prendiamo in considerazione una soluzione acquosa satura[24] di vitamina C (anche definito come acido ascorbico) che corrisponde ad una concentrazione di 1.87 mol/L ed indicata anche come 1.87 M[25]. Diluiamo questa soluzione di acido ascorbico (che tecnicamente si chiama soluzione madre) in un rapporto 1 : 100 con acqua. Diluire 1 : 100 significa che preso 1 della soluzione madre aggiungo 99 di acqua. Naturalmente mi sto riferendo ai volumi, per cui 1 mL di soluzione madre viene addizionato con 99 mL di acqua. Quale sarà la concentrazione finale? È facile. Basta semplicemente dividere la concentrazione della soluzione madre per 100, ovvero il volume espresso in millilitri della soluzione finale. Quindi la nuova soluzione ha concentrazione 1.87 x 10^(-2) M. Andiamo avanti e diluiamo la nuova soluzione in rapporto 1 : 100. Si ottiene una soluzione la cui concentrazione è la centesima parte di quella iniziale, quindi: 1.87 x 10^(-4) M. Se continuiamo n volte, la soluzione finale avrà concentrazione 1.87 x 10^(-2n) M.

Nel linguaggio usato dagli omeopati sto facendo le famose diluizioni CH, ovvero centesimali, per cui

CH = 1.87 x 10^(-2) M

2CH = 1.87 x 10^(-4) M

………..

nCH = 1.87 x 10^(-2n) M

Quale sarà il numero di molecole di acido ascorbico nella soluzione nCH? Si dimostra che il numero di molecole presente in una data soluzione si ottiene moltiplicando il numero di moli della sostanza per il numero di Avogadro[6], ovvero per un numero che è 6.022 x 10^23. Di conseguenza, il numero di molecole di acido ascorbico nella soluzione a concentrazione 1.87 x 10^(-2n) M sarà:

1.87 x 10^(-2n) x 6.022 x 10^23 molecole/L = 11.3 x 10^(23-2n) molecole/L

In pratica dopo 12 diluizioni centesimali (n = 12), si ottiene una soluzione che contiene 1.13 molecole per litro o, in soldoni, 1 molecola per litro. Ne viene che dopo 20 diluizioni centesimali (n=20), di fatto non c’è più nulla nella soluzione. Si tratta solo di solvente, ovvero di acqua.

Non voglio essere, però, così drastico e mi fermo a 5 diluizioni centesimali (n = 5). Il numero di molecole è 11.3 x 10^13 molecole/L. In effetti, nella soluzione 5CH ci sono 113000 miliardi di molecole per litro. Allora i fautori dell’omeopatia hanno ragione. Ci sono ancora miliardi di molecole in soluzione. Certo che ci sono! L’unico problema è che nel mondo biochimico (quello del quale dobbiamo tener conto quando si discute di salute umana) non conta il valore assoluto relativo al numero di molecole, ma la concentrazione delle stesse espressa in mol/L o M (si parla, in pratica, di effetto concentrazione). In altre parole 113000 miliardi di molecole corrispondono ad una concentrazione di 1.87 x 10^(-10) M. Cosa significa questo numero? Significa che ci sono circa 2 moli di acido ascorbico ogni 0.1 nL di acqua[26]. Questo corrisponde ad una concentrazione di 3.29 x 10^(-2) ppb[27], ovvero in un litro di acqua ci sono 3.29 x 10^(-2) μg di acido ascorbico . Se consideriamo che la dose minima giornaliera di acido ascorbico indicata nel Codex Alimentarius per evitare lo scorbuto è di 30 mg, ne viene che dovremmo bere circa 100 L di formulato omeopatico 5CH di acido ascorbico al giorno. Adesso, considerando che una giornata di veglia è fatta di 12 ore, possiamo concludere che dovremmo assumere almeno 8 L di formulato 5CH di acido ascorbico all’ora. Tuttavia, la dose letale media di acqua corrisponde alll’assunzione di 5 L in una sola ora. Ciò comporta la morte fisica. Il gioco omeopatico vale, quindi, la candela?

Conclusioni

La medicina omeopatica fa parte della nostra storia scientifica. È stato un modo per cercare di dare spiegazioni in un momento preciso del nostro tempo, quando le conoscenze biochimiche erano ancora agli albori e la delucidazione del metabolismo umano di là da venire. Non si può far finta che non sia esistita, ma certamente lo sviluppo e l’evoluzione delle conoscenze scientifiche hanno reso obsolete le trovate metafisiche di Samuel Hahnemann. Molte altre teorie sono apparse e poi scomparse nel corso della storia della scienza ed oggi le ricordiamo solo per il ruolo che hanno svolto nel contesto storico in cui sono nate. L’azione del tempo le ha rese obsolete e prive di significato. Oggi l’omeopatia può essere considerata, senza tema di smentita, solo una pratica esoterica priva di ogni validità scientifica e come un ramo secco nell’immenso albero delle nostre conoscenze.

Qui di seguito il video della mia presentazione sull’omeopatia tenuta al Caffè dei Libri di Bassano del Grappa il 29 Dicembre 2016

Riferimenti e note

[1] http://www.liberliber.it/mediateca/libri/t/thorpe/storia_della_chimica/pdf/thorpe_storia_della_chimica.pdf

[2] http://www.luccaballoonclub.it/docs/aerostatica.pdf

[3] http://online.scuola.zanichelli.it/chimicafacile/files/2011/02/app72.pdf

[4] http://www.cornish-mining.org.uk/sites/default/files/5%20-%20Richard%20Trevithick%20(1771-1833)%20and%20the%20Cornish%20Engine.pdf

[5] La “vis vitalis” è una forza metafisica che determina le proprietà strutturali e funzionali di ogni organismo. I patogeni responsabili delle malattie alterano la fluidità della “vis vitalis” e, di conseguenza, comportano alterazioni delle caratteristiche funzionali del corpo e le sensazioni sgradevoli associate alle malattie. Solo il mondo organico è caratterizzato dalla “vis vitalis” mentre è esclusa da quello inorganico. Mondo organico e mondo inorganico sono caratterizzate da chimiche differenti. La sintesi di Wöhler che converte isocianato di ammonio (un sale inorganico) in urea (un composto organico) è stato il primo esempio del superamento del concetto di “vis vitalis” legato alla incompatibilità tra chimica organica e chimica inorganica.

[6] Kotz J. C., Treichel P. M., Townsend J. R. Chimica, quinta ed. italiana, EdiSES, 2012

[7] http://www.treccani.it/scuola/lezioni/in_aula/fisica/storia_scienze/4.html

[8] Bill Bryson, breve storia di (quasi) tutto, Guanda editore

[9] Isaaac Asimov, Breve storia della biologia, Zanichelli

[10] Isaac Asimov, Breve storia della chimica, Zanichelli

[11] Isaac Asimov, Il libro di fisica, Ed. Oscar Mondadori

[12] La teoria della generazione spontanea si basa sull’assunzione che la vita sorga spontaneamente da materiale inanimato di natura organica in quanto dotato di “vis vitalis”. La vita non può nascere spontaneamente dal materiale inorganico in quanto questo non è dotato della “vis vitalis”. Benché ancora sostenuta da alcuni, già all’inizio del XIX secolo la teoria della generazione spontanea era considerata obsoleta perché erano stati fatti esperimenti che dimostravano come la vita non potesse essere generata dal materiale organico in assenza di aria. http://online.scuola.zanichelli.it/barbonescienzeintegrate/files/2010/03/V09_01.pdf

[13] Silvio Garattini, Acqua fresca, Sironi editore

[14] http://omeopatia.org/upload/Image/convegno/FAGONE-26-10-2011-Relazione.pdf

[15] http://www1.lsbu.ac.uk/water/water_hydrogen_bonding.html

[16] http://www.laputa.it/ritrovamento-titanic/#4/41.73/-49.95

[17] http://www.laputa.it/blog/del-perche-non-possiamo-attraversare-i-muri-come-harry-potter/

[18] http://www.nature.com/news/2004/041004/full/news041004-19.html

[19] Conte e Piccolo, (2007) Solid state nuclear magnetic resonance spectroscopy as a tool to characterize natural organic matter and soil samples. The basic principles, Opt. Pura Apl. 40 (2): 215-226 (http://www.sedoptica.es/Menu_Volumenes/Pdfs/259.pdf)

[20] Conte e Alonzo (2013) Environmental NMR: Fast-field-cycling Relaxometry, eMagRes 2: 389–398 (https://www.researchgate.net/publication/278307250_Environmental_NMR_Fast-field-cycling_Relaxometry)

[21] Conte (2015) Effects of ions on water structure: a low-field 1H T1 NMR relaxometry approach Magnetic Resonance in Chemistry 53: 711–718 (https://www.researchgate.net/publication/267288365_Effects_of_ions_on_water_structure_A_low-field_1H_T1_NMR_relaxometry_approach)

[22] Shang, Huwiler-Müntener, Nartey, Jüni, Dörig, Sterne, Pewsner, Egger (2005) Are the clinical effects of homoeopathy placebo effects? Comparative study of placebo-controlled trials of homoeopathy and allopathy The Lancet 366: 726-732 (http://www.thelancet.com/journals/lancet/article/PIIS0140-6736(05)67177-2/abstract)

[23] http://www.scetticamente.it/articoli/approfondimenti/244-sulle-dichiarazioni-della-siomi-la-societa-italiana-di-omeopatia-e-medicina-integrata.html

[24] Una soluzione si dice satura quando il soluto ha raggiunto la sua concentrazione massima nel solvente ed aggiunte successive determinano la precipitazione del soluto.

[25] M sta per molarità ed è un modo di esprimere la concentrazione del soluto in un solvente. Corrisponde al numero di moli (mol) di soluto per unità di volume di solvente espresso in litri (L). La mole, per convenzione internazionale, corrisponde alla quantità di sostanza contenuta in 0.012 kg dell’isotopo 12 del carbonio. Operativamente, per calcolare il numero di moli si divide il peso della sostanza di interesse, espresso in grammi, per il suo peso formula (o peso molecolare, nel caso di molecole) espresso in g/mol.

[26] Il simbolo nL sta per nanolitro e corrisponde alla miliardesima parte del litro.

[27] Il simbolo ppb indica le parti per miliardo. È un modo di esprimere la concentrazione non più in uso nel sistema internazionale (SI) pur essendo rimasto nel linguaggio tecnico di laboratorio. Se si prende un oggetto e lo si divide in un miliardo di pezzettini, uno solo di essi corrisponde ad una parte sull’intero miliardo. Nel nostro caso 1 ppb corrisponde ad 1 microgrammo (μg) di acido ascorbico per Litro di acqua.

Pubblicato anche su www.laputa.it/omeopatia

Gli OGM per le biodiversità

INTRODUZIONE AGLI OGM

Il tema degli OGM per le biodiversità e il pericolo che rappresentano è un cavallo di battaglia per i sostenitori anti-OGM. La loro idea è che gli organismi modificati geneticamente riducano la biodiversità degli ecosistemi con conseguente danni ecologici non più risanabili. Infatti, è ben noto che i vari comparti ambientali (residenza di forme di vita diversificate) siano risorse non rinnovabili, per cui i danni ad essi apportati si tradurrebbero nella perdita delle proprietà atte al sostentamento della vita. Questa argomentazione è ampiamente documentata  in tantissimi siti web.  Basta, infatti, ricercare in Google “OGM per le biodiversità” per venire inondati da centinaia, se non migliaia, di siti anti-OGM.

Nel mondo attuale in cui predomina la falsa idea della democraticità della scienza, ne viene che un utente medio (ovvero dalla cultura scientifica non troppo sviluppata) possa pensare che, se tanti, troppi, siti web dichiarano che gli OGM per le biodiversità siano pericolosi, questo sia un fatto reale e che la posizione pro-OGM da parte del mondo scientifico nasconda chissà quali trame oscure. Prevale, insomma, l’idea che il rumore di fondo sia paragonabile ed abbia la stessa rilevanza dei segnali, neanche molto sporadici, che si alzano ben al di sopra di tale rumore.

Cerchiamo di fare, invece, chiarezza per quanto possibile e vediamo di affrontare il problema nel modo più oggettivo possibile.

Affrontare un problema in modo oggettivo vuol dire applicare il metodo scientifico e cominciare, innanzitutto, a definire i contorni entro i quali ci si muove. Per delimitare i contorni anzidetti bisogna capire ciò di cui si parla.

COSA VUOL DIRE COMPARTO AMBIENTALE

È ben noto che l’acqua è un bene indispensabile del quale nessun organismo vivente può fare a meno. È il mezzo che consente la veicolazione dei nutrienti ed è il solvente nel quale si completano tutte le reazioni chimiche che caratterizzano il metabolismo sia animale che vegetale. Contaminare le acque vuol dire renderle inadatte al metabolismo come esso si è sviluppato nel corso degli eoni [1].

Una argomentazione analoga va invocata per il suolo. Anche se meno intuitivamente, il suolo va protetto esattamente come le acque. Dal momento che esso è la sede per la produzione alimentare ed è fonte del nostro nutrimento (sembra strano doverlo dire, ma i prodotti che si comprano al supermercato non crescono sui banconi degli stessi), contaminare un suolo o (più in generale) depauperarlo delle proprietà che lo caratterizzano, vuol dire ridurre drasticamente l’approvvigionamento alimentare in grado di sostenere tutte le forme animali e vegetali che popolano il nostro pianeta [1].

Anche l’atmosfera ha una importanza fondamentale nel sostenere la vita. È ben noto, infatti, che, grazie alla particolare miscela dei vari gas che la compongono, tutti gli organismi viventi sono in grado di esplicare le proprie funzioni. Rimanendo solo nell’ambito umano, una composizione atmosferica solo in minima parte diversa da quella che conosciamo (ovvero all’incirca 20% di ossigeno molecolare, 79% di azoto molecolare e 1% di altre tipologie di gas) non consentirebbe la nostra sopravvivenza. Infatti, al di sotto del 16% circa di ossigeno molecolare atmosferico moriremmo per asfissia, mentre concentrazioni molto elevate di ossigeno molecolare atmosferico comporterebbero la distruzione delle cellule secondo meccanismi che non sto a descrivere perché al di là degli scopi di questo semplice articoletto [1].

I tre sistemi citati, ovvero acque, suoli ed atmosfera (tralascio per semplicità il quarto che è quello dei sedimenti), sono tutti indispensabili al sostentamento della vita come noi la conosciamo e rappresentano tre comparti distinti dell’ambiente in cui viviamo. Pur essendo distinti per la loro natura chimica, essi non sono indipendenti gli uni dagli altri, ma  sono interconnessi secondo uno schema semplificato del tipo:

In altre parole, gli equilibri chimici alla base dello sviluppo di uno dei tre comparti influenzano tutti gli altri. Questo vuol dire che un contaminante immesso in atmosfera dall’attività antropica può ricadere al suolo attraverso le piogge; dal suolo può raggiungere le acque di falda mediante lisciviazione; da queste, infine, può arrivare ai fiumi ed al mare. Durante tutto questo percorso, il contaminante può entrare a contatto con la biosfera, ed in particolare con l’uomo, attraverso la catena alimentare con conseguenze più o meno drammatiche a seconda del livello di tossicità del contaminante stesso  [1].

COSA VUOL DIRE RISORSA NON RINNOVABILE

In termini ambientali, una “risorsa” è una qualsiasi fonte o un qualsiasi mezzo atto al sostentamento della vita [1, 2]. Alla luce di questa definizione, si può dire che i comparti ambientali descritti nel paragrafo precedente sono utili “risorse” per tutti gli esseri viventi. Non è difficile intuire, infatti, che senza aria e senza acqua non potrebbe esistere la vita come noi la conosciamo, così come senza suolo non sarebbe possibile alcuna produzione alimentare.

Sfruttare le risorse per il sostentamento della vita vuol dire usarle, da un lato, per migliorare la qualità dell’esistenza (per esempio, producendo l’energia necessaria per muoversi verso l’agognato luogo delle meritate  vacanze), dall’altro, per produrre gli alimenti che servono per sopravvivere (in modo da poter lavorare e guadagnare abbastanza per poter andare nei luoghi vacanzieri anzidetti). In ogni caso, lo sfruttamento delle risorse ambientali comporta il consumo delle stesse con riduzione progressiva delle capacità di sostenere la vita. Per esempio, usare acqua dolce nella lavatrice sottrae questa risorsa all’alimentazione; coltivare i campi per produrre alimenti  diminuisce la qualità dei suoli (laddove il concetto di qualità è di tipo positivo dal momento che ci si riferisce ad un insieme di proprietà che  consentono l’utilizzo dei suoli ai fini della produzione alimentare).

Il significato di “rinnovabile” si riconduce alla capacità della risorsa utilizzata (e, di conseguenza, consumata) di rigenerarsi in modo da consentirne un uso costante nel tempo [1, 2]. Questa visione di “rinnovabile”, tuttavia, è troppo generica perché non tiene conto del fatto che tutti i comparti ambientali sono rinnovabili su scale temporali che vanno molto oltre il tempo di vita medio degli esseri umani.

Perché una risorsa possa essere considerata “rinnovabile” e, quindi, utile al sostentamento della vita, è necessario che il tempo necessario per la sua rigenerazione sia almeno confrontabile con quello medio della vita umana. Per questo motivo, si può affermare che i comparti ambientali anzidetti, in grado di rigenerarsi in tempi molto più lunghi della vita media umana, sono delle risorse non rinnovabili.

COSA E’ LA SOSTENIBILITA’?

“Sostenibilità” è un termine usato a livello scientifico con diversi significati a seconda del contesto in cui viene usato. In particolare, in campo agricolo, “sostenibilità” si riferisce alla capacità di un sistema a mantenere la propria produttività costante, indipendentemente dal grado di alterazione a cui il sistema stesso è sottoposto [2]. Detto ciò, si può intuire che l’attività agricola in toto, ovvero anche quella ritenuta a impatto nullo come l’agricoltura biologica, ha un forte effetto sui suoli e sui diversi comparti ambientali. La lavorazione meccanica dei suoli, per esempio, se da un lato ne migliora l’ossigenazione e la strutturazione, dall’altro li rende più facilmente erodibili; le piante che assumono nutrienti durante le diverse fasi della germinazione e della crescita li sottraggono al suolo diminuendone, così, la fertilità se tali nutrienti non vengono opportunamente restituiti al suolo mediante fertilizzazione; l’irrigazione, necessaria per consentire la produzione vegetale, sottrae acqua potabile necessaria alla sopravvivenza umana; l’attività zootecnica oltre a sfruttare suolo (per la costruzione delle stalle e l’approvvigionamento alimentare degli animali) è associata anche alla contaminazione atmosferica in quanto gli animali producono gas serra; e potrei continuare. La conservazione delle risorse non rinnovabili passa necessariamente attraverso l’uso di pratiche agricole sostenibili quali, per esempio, quelle che limitano l’uso massivo di fertilizzanti inorganici favorendo l’applicazione di fertilizzanti organici; l’uso di tecniche colturali che limitano la produzione di gas serra (per esempio il minimum tillage e la semina diretta su terreno non lavorato) o il consumo di acqua potabile (per esempio la pacciamatura); la gestione integrata del suolo attraverso la lotta alla desertificazione e la corretta gestione dei suoli destinati sia alla produzione alimentare che energetica [3-5].

COSA SIGNIFICA BIODIVERSITÀ

L’enciclopedia Treccani definisce la biodiversità come “la variabilità tra gli organismi viventi all’interno di una singola specie, fra specie diverse e tra ecosistemi”. In effetti il termine “biodiversità”, di cui tanti oggi abusano, è molto complesso e per spiegarlo provo ad usare delle metafore.

Immaginiamo un condominio in un palazzo di 5 piani (sistema A) con due appartamenti per piano; ogni singolo appartamento può essere considerato come un piccolo ecosistema autonomo. Gli abitanti di ogni appartamento rappresentano la biodiversità dell’ecosistema/appartamento. Essi dormono, si svegliano, fanno colazione, pranzano, cenano e comprano tutto ciò di cui hanno bisogno. Un giorno il singolo proprietario di un appartamento che vive da solo nel suo ecosistema/bilocale, decide di fare un dolce ma si accorge di aver finito lo zucchero ed è troppo tardi per trovare un negozio aperto. Cosa fa? Esce dal proprio ecosistema/appartamento e suona all’ecosistema/appartamento vicino. Quest’ultimo è un ecosistema/quadrilocale in cui possono vivere comodamente 4 persone. La biodiversità dell’ecosistema/bilocale è inferiore in termini numerici rispetto a quella dell’ecosistema/quadrilocale. La maggiore disponibilità di spazio consente una maggiore biodiversità. Tuttavia, i due ecosistemi autonomi interagiscono tra loro quando è necessario per permettere la sopravvivenza (nel nostro caso mediante lo scambio di zucchero) degli organismi viventi che lo occupano (potremmo dire che occupano le due diverse nicchie ecologiche).

Una volta evidenziato che gli organismi viventi possono sopravvivere grazie alla interazione tra gli ecosistemi confinanti, andiamo oltre.

Il numero di componenti medio negli ecosistemi/appartamento è, diciamo, 4; ne viene che la popolazione del condominio è di 40 persone.

Cambiamo scenario.

Consideriamo lo stesso numero medio di persone per appartamento ma in un condominio di un palazzo di 10 piani (sistema B). Il numero totale di persone in questo nuovo sistema è 80. Possiamo dire che la biodiversità (intesa come numero di persone) del sistema B è maggiore di quella del sistema A. Supponiamo ora che i due palazzi (ovvero sistema A e sistema B) siano costruiti in uno spazio in cui sia presente un termitaio (sistema C). Il termitaio è abitato da, diciamo, 10000 termiti. Possiamo dire che la biodiversità (sempre intesa come numero di individui per ogni sistema) varia nell’ordine sistema C > sistema B > sistema A. Tuttavia, la popolazione dei sistemi A e B è fatta da persone appartenenti alla stessa specie, ovvero umani (indichiamoli come sistema U, per semplicità), per cui possiamo dire che la biodiversità del termitaio è di gran lunga maggiore di quella degli umani nei due condomini appena citati, ovvero sistema C > sistema U. Facciamo, ora, un passo avanti e assumiamo che nel terreno dove sorgono i condomini ed il termitaio ci sia anche un fiume (sistema D) in cui mediamente vivono non meno di 500 pesci. Possiamo dire che la biodiversità (ancora intesa come numero di individui diversi) nei due ecosistemi suolo e acqua varia come sistema C > sistema D > sistema U. Tuttavia, se raggruppiamo i sistemi C ed U in base al fatto che sono entrambi terrestri (indichiamo i due messi insieme come sistema T), ne viene che sistema T > sistema D. Ma nel fiume, così come sulla terra, non “abitano” soltanto pesci o termiti o umani. Ci sono anche piante, uccelli, insetti, e altre moltitudini di micro, meso e macro organismi. È l’insieme di tutti questi esseri viventi, in grado di interagire tra loro con modalità differenti (per esempio in modo simbiotico o parassitario), a costituire la biodiversità [6].

L’esempio fatto evidenzia che la biodiversità si riferisce non solo alle specie viventi in un dato ecosistema, ma anche alla diversificazione degli ecosistemi stessi che sono in grado di interagire simbioticamente, e quindi sopravvivere, grazie alle interazioni tra loro.

L’importanza della biodiversità  risiede nel fatto che viene assicurato l’equilibrio dinamico della biosfera [7]. In particolare, maggiore è la biodiversità e maggiore è la probabilità che venga assicurata la continuità della vita nel caso in cui alterazioni ambientali sconvolgano gli ecosistemi [7].  In altre parole, se l’impatto di un meteorite sulla Terra comporta l’estinzione di una certa specie (come i dinosauri), la nicchia ecologica lasciata libera dalla specie estinta viene occupata da altre forme di vita e la vita, in senso generale, è, in ogni caso, in grado di continuare [7]

AGRICOLTURA E BIODIVERSITÀ

Alla luce di quanto detto fino ad ora è lecito chiedersi quale sia il ruolo dell’agricoltura in tutte le sue forme nello sviluppo della biodiversità.

È stato già evidenziato che tutte le pratiche agricole hanno un forte impatto sui diversi comparti ambientali alterandone le caratteristiche e rendendoli inadatti al sostentamento della vita se non vengono applicate opportune regole per la conservazione degli stessi [3-5]. Nella fattispecie, l’attività agricola necessita di ampi spazi nei quali poter coltivare le piante ad uso alimentare. I grandi spazi si ottengono solo attraverso il disboscamento. La semplice conversione di uno spazio da foresta a campo agricolo comporta non solo un aumento netto di anidride carbonica [1], ovvero un gas serra, nell’atmosfera (quindi incremento dell’inquinamento del comparto aria), ma anche un cambiamento nella tipologia di micro, meso e macro fauna che è in grado di sopravvivere in quel luogo [1]. Faccio un esempio molto semplice.

In un bosco vivono i gufi; se viene attuato il disboscamento per convertire il bosco in spazio arabile, si elimina l’habitat dei gufi che, di conseguenza, spariscono da quell’area. Al posto dei gufi subentrerà un’altra tipologia di uccelli, per esempio i corvi, che sopravvivono “predando” le colture che gli umani usano per la loro produzione alimentare. I gufi sono predatori naturali di topi ed altri piccoli animali. Questi ultimi, in assenza dei loro predatori, tenderanno a proliferare incrementando il loro numero. Come si arguisce da questo esempio banale, la conversione di uno spazio da bosco a campo agricolo comporta la sparizione di un certo tipo di esseri viventi e la comparsa di altri animali più adatti a vivere nel nuovo ambiente.

Il discorso che ho fatto sui gufi, i corvi ed i topi si applica anche alla biomassa microbica dei suoli che, come gli animali anzidetti, contribuisce alla biodiversità del sistema agricolo. Tutto questo, naturalmente, è valido se guardiamo solo  alla fauna. Se guardiamo alle specie vegetali, l’attività agricola (e, si badi bene, sto parlando di tutte le tipologie di agricoltura) comporta una drastica riduzione della biodiversità vegetale. Infatti le aree boschive sono molto ricche di specie vegetali di ogni tipo, in grado di vivere in simbiosi tra loro o parassitando altre specie vegetali. Se vogliamo produrre mega litri di olio extra vergine di oliva dalla varietà Biancolilla da esportare in tutto il mondo abbiamo bisogno solo di ulivi che appartengono alla cultivar che ci interessa. La massimizzazione della produzione, inoltre, comporta la necessità di eliminare tutte le piante “parassite” in grado di competere con quelle di interesse per l’assorbimento dei nutrienti.

In altre parole, l’attività agricola comporta una alterazione della biodiversità faunistica (micro, meso e macro) nel senso che ad una diminuzione del numero di specie viventi rispetto a quelle presenti nelle zone vergini corrisponde anche la colonizzazione del nuovo habitat da parte di altre specie adatte alla sopravvivenza negli spazi destinati all’agricoltura. Per altri versi, sotto il profilo della biodiversità vegetale, le monocolture sostituiscono l’enorme varietà biologica che caratterizza le aree boschive/forestali.

Da tutto quanto detto si capisce che è possibile distinguere tra biodiversità forestale/boschiva e biodiversità agricola (in questa sede tralascio gli altri tipi di biodiversità come quella aerea e acquatica che sono fuori contesto). La prima riceve un rapido decremento nel cambio di destinazione d’uso di un suolo (da forestale/boschivo a coltivato). Tuttavia, la biodiversità agricola, legata alla diversificazione delle specie viventi adatte alla vita in un ambiente “antropizzato”, dipende fortemente dal tipo di tecniche agricole utilizzate [8-11]. Infatti le pratiche intensive (intese come quelle che non guardano alla salvaguardia dell’ambiente ma solo alla produttività economica) portano ad una riduzione della biodiversità che è dal 10 al 30 % in meno rispetto a quella che si misura quando si fa uso di pratiche sostenibili [8-11]. Dal momento che è stato evidenziato che la salubrità alimentare è direttamente correlata alla biodiversità agricola [12, 13], da qualche anno tutte le agenzie internazionali spingono per l’applicazione di pratiche agricole sostenibili [12-14]. Queste ultime, quindi, oltre a consentire la conservazione delle risorse non rinnovabili come definite in precedenza, consentono anche la salvaguardia della biodiversità. Quest’ultima può essere a tutti gli effetti considerata anch’essa come una risorsa non rinnovabile (esattamente come suolo, aria ed acqua) da proteggere e conservare per il miglioramento della qualità della vita umana.

COSA SONO GLI ORGANISMI GENETICAMENTE MODIFICATI O OGM?

Esistono due aspetti distinti che devono essere presi in considerazione per definire il significato di “organismo geneticamente modificato”. Da un lato abbiamo l’approccio scientifico che si basa sui fatti, dall’altro abbiamo l’approccio politico che non tiene conto dei fatti ma solo dell’umore degli elettori e delle convenienze elettorali. Insomma, l’approccio politico alla definizione di OGM è di carattere culturale, piuttosto che reale [15]. Ma andiamo con ordine.

LE MODIFICHE GENETICHE PER LA SCIENZA

Fin da quando Darwin ha posto le basi della teoria dell’evoluzione è apparso chiaro, ed è diventato progressivamente sempre più evidente sotto il profilo sperimentale, che tutti gli organismi viventi hanno avuto origine da un progenitore comune che oggi noi chiamiamo LUCA, ovvero “Last universal common ancestor”, che altro non è che il famoso brodo primordiale nel quale si sono realizzate tutte le condizioni chimico fisiche per la formazione delle protocellule e lo sviluppo del metabolismo che caratterizza tutti gli esseri viventi [16]. Solo l’evoluzione, associata all’adattamento alle condizioni ambientali, dal progenitore comune riesce a spiegare la similitudine tra il nostro patrimonio genetico e quello di tanti altri organismi viventi. Per esempio, oltre il 98% di similitudine esiste tra il DNA umano e quello degli scimpanzé, oltre il 90% di affinità esiste tra il DNA umano e quello dei topi mentre oltre il 50% di somiglianza accomuna il nostro DNA a quello delle piante [15].

La differenziazione genetica avviene in modo casuale per effetto di errori imprevedibili durante i processi di replicazione del DNA. La moltitudine di organismi che viene così generata (quella che in precedenza è stata identificata col termine di “biodiversità”) è fatta da individui che sotto la spinta della pressione ambientale possono soccombere oppure sopravvivere. In quest’ultimo caso, il patrimonio genetico viene trasmesso alle generazioni successive.

Nel corso di milioni di anni, la differenziazione genetica ha prodotto l’insieme di organismi viventi (dai microorganismi  all’uomo) che oggi siamo abituati a conoscere. In definitiva, tutti noi siamo il prodotto di modificazioni genetiche (ovvero alterazioni imprevedibili del DNA) che ci consentono di occupare delle ben precise nicchie ecologiche nelle quali siamo in grado di sopravvivere [17].

Le modifiche genetiche possono essere  indotte anche in modo mirato. Per esempio, fin da quando 10.000 anni fa l’uomo è passato dalla fase nomade di caccia/raccolta a quella stanziale di carattere prevalentemente agricolo [18], ha tentato, tra successi ed insuccessi, di modificare le caratteristiche genetiche dei vegetali e degli animali  in modo da aumentare la produttività agricola dei primi e rendere più docili i secondi. In tutti e due i casi, lo scopo è sempre stata la massimizzazione della produzione alimentare così da sfamare un numero sempre più ampio (attualmente in fase di crescita esponenziale) di esseri umani.

In assenza di conoscenze specifiche, le modifiche genetiche mirate venivano indotte per tentativi ed errori attraverso l’incrocio di organismi aventi ognuno una o più delle caratteristiche desiderate. In questo modo era possibile ottenere piante “domestiche” in grado di resistere a certe particolari patologie a cui non erano soggette piante selvatiche e meno utili sotto l’aspetto alimentare. Allo stesso modo, era possibile selezionare animali da latte in grado di produrre questo alimento in modo continuativo o animali da caccia con specifiche caratteristiche morfologiche tali da renderli adatti per le diverse tipologie di caccia.

La progressione delle conoscenze ha condotto alla comprensione dei meccanismi biochimici alla base dell’ereditarietà genetica cosicché oggi è possibile operare modifiche genetiche con una possibilità di errore di gran lunga inferiore rispetto a quella associata ai tentativi di incrocio delle vecchie pratiche agricole/zootecniche. La nuove tecniche di ingegneria genetica consentono, infatti, di modificare il DNA di una specie vegetale variando unicamente i geni responsabili di certe particolari caratteristiche [19]. In questo modo si ottengono, in tempi molto più rapidi rispetto alle pratiche convenzionali, piante con proprietà nutrizionali o meccanismi di difesa di gran lunga superiori rispetto a quelle cosiddette tradizionali [15]. Un esempio tra tutti è il famoso “goldenrice” [20]. Si tratta di un riso modificato geneticamente capace di produrre, come metabolita secondario, il b-carotene, ovvero il precursore della vitamina A la cui carenza è associata a inibizione della crescita, deformazione e fragilità delle ossa e  modifiche delle strutture epiteliali e degli organi riproduttivi [21]. La carenza di vitamina A si ottiene solo per deficit nutrizionali in quelle popolazioni che non hanno accesso a fonti alimentari in grado di fornire i precursori della suddetta vitamina. È il caso, per esempio, delle popolazioni orientali (India in testa) la cui alimentazione è prevalentemente basata sull’uso del riso. La sostituzione del riso tradizionale col riso golden consente di superare i problemi nutrizionali di cui si accennava.

LE MODIFICHE GENETICHE PER LA POLITICA E L’OPINIONE COMUNE

È stato evidenziato come, sotto l’aspetto scientifico, tutti gli esseri viventi possano essere considerati come organismi geneticamente modificati perché derivati da processi evolutivi durante i quali piccole variazioni genetiche hanno consentito l’adattamento (e, di conseguenza, la sopravvivenza) nelle condizioni più disparate. È stato anche puntualizzato come il progresso tecnologico in ambito agricolo consenta oggi di effettuare modifiche genetiche mirate ed in tempi brevi in modo da ottimizzare la produttività agricola. I prodotti agricoli selezionati mediante ingegneria genetica non vengono utilizzati o immessi in commercio a cuor leggero, ma subiscono una serie di controlli molto minuziosi in modo da rilevare ogni possibile effetto collaterale sulla salute umana [15]. Nonostante la “naturalità” (nel senso comune del termine) delle modifiche genetiche e gli innumerevoli controlli cui i prodotti modificati geneticamente sono sottoposti, la politica, che – come già evidenziato – segue gli umori degli elettori, cerca di opporsi in tutti i modi agli OGM.

La prima direttiva Europea 90/220/CEE sugli OGM stabilisce al comma 2 dell’articolo 2 che è “organismo geneticamente modificato (OGM), un organismo il cui materiale genetico è stato modificato in modo diverso da quanto si verifica in natura con l’accoppiamento e/o la ricombinazione genetica naturale” [22], laddove viene preso in considerazione il concetto di “natura” che, come evidenziato in molta letteratura, è solo ed esclusivamente di carattere culturale [15, 23]. I processi tecnologici mirati alle modifiche genetiche per il miglioramento delle caratteristiche vegetali sono in tutto e per tutto simili, in termini biochimici, a quanto accade “naturalmente”. La differenza che una certa politica vuole vedere è solo nel procedimento utilizzato. In questo modo una modifica genetica ottenuta per tentativi ed errori mediante innesti non porta, normativamente, ad un OGM, mentre un organismo ottenuto mediante la tecnica del DNA ricombinante è considerato, per legge, un OGM. Si deve, quindi, puntualizzare che, sotto l’aspetto scientifico, questa differenziazione normativa è completamente priva di significato e potrebbe essere legata unicamente ad una politica protezionistica delle aziende di prodotti fitosanitari di cui il vecchio continente, e l’Italia in particolare, è abbastanza ricco [15, 24, 25]. In effetti, come riportato in una intervista alla senatrice Elena Cattaneo su Linkiesta [24], i maggiori avversari, in Italia, dei prodotti OGM sono proprio le aziende che producono fitofarmaci [25] le quali vedrebbero ridurre i propri introiti dalla introduzione in agricoltura delle piante OGM (nel prossimo paragrafo si discuterà brevemente dei possibili vantaggi/svantaggi dell’uso agricolo degli OGM).

Ma quale è il ruolo giocato dalle popolazioni Europee nell’indirizzare la politica dell’Unione e degli stati membri?  In realtà bisogna dire che i cittadini dell’Unione Europea non sono adeguatamente informati sull’aspetto scientifico degli OGM e risentono in gran parte delle leggende e dei miti propagandati ad arte da gente di spettacolo [26] e da persone che hanno mitizzato i sapori delle epoche andate [27]. Tra questi miti sono da ricordare quello delle biotecnologie contro natura, della alterazione del DNA umano per ingestione di piante OGM, della diffusione della resistenza agli antibiotici con conseguente incremento nella difficoltà a resistere ad alcune malattie, della riduzione della biodiversità (di cui si discuterà più avanti) e così via cantando [28]. La scarsa preparazione scientifica associata ai miti anzidetti fa in modo che il cittadino EU prema sui governi affinché venga limitato l’uso di organismi geneticamente modificati in agricoltura. I governi colgono la palla al balzo e, per non perdere consensi, seguono l’umore del “popolo” abusando di un principio di precauzione che, come si intuisce da quanto scritto fino ad ora e come si comprenderà dalla lettura dei paragrafi seguenti, non ha alcun senso.

AGRICOLTURA ED OGM

Al momento attuale l’uso di organismi geneticamente modificati in agricoltura è vietato in quasi tutta Europa. Solo Spagna e Portogallo hanno introdotto coltivazioni di mais OGM [29]. Tuttavia, la ascientificità delle proibizioni normative in atto sia in Europa che in tantissimi paesi del globo terrestre è supportata dalla pubblicazione di numerosi studi che evidenziano l’efficacia economica ed ambientale nell’uso agricolo di piante geneticamente modificate. In Cina, per esempio, la coltivazione di cotone OGM (quello che viene indicato come cotone Bt, ovvero  modificato geneticamente con il gene del Bacillusthuringensis inserito nel vegetale per fargli produrre una tossina che lo rende resistente ai parassiti) ha portato benefici sia economici che ambientali. Infatti, studi condotti per la valutazione a breve [30] e lungo termine [31] del cotone Bt sulla società Cinese dimostrano non solo che gli agricoltori che hanno introdotto questa pianta nella loro produzione hanno avuto un incremento di guadagni economici, ma hanno anche operato una riduzione nella quantità di fitofarmaci, dannosi per l’ambiente, usati nella loro pratica agricola. Il cotone Bt ha apportato benefici anche agli agricoltori Indiani come riportato nei riferimenti [32-34].  Inoltre, impatti positivi, sia economici che ambientali, si sono avuti anche in alcuni paesi del Sud America (Brasile, Argentina e Paraguay) e negli Stati Uniti [35-37] a seguito dell’introduzione della soja OGM.

Nonostante la grande massa di dati sperimentali che attestano della positività dell’uso in agricoltura di piante OGM, un  lavoro molto recente pubblicato su Science Advances [38] si pone in controtendenza rispetto a quanto finora riportato per gli Stati Uniti. In particolare, gli autori dello studio [38] rivelano che mentre l’uso di mais OGM ha portato ad una riduzione della quantità di insetticidi ed erbicidi rispetto alla situazione antecedente al 1998, l’uso di soja OGM ha comportato sì una riduzione nella quantità di insetticidi, ma un incremento in quella di erbicidi. Gli autori del lavoro contestualizzano i loro dati evidenziando che l’incremento nell’uso di erbicidi conseguente alla coltivazione di soja OGM è dovuto all’aumento alla resistenza al glifosato [39] da parte delle erbe infestanti.

RELAZIONE TRA ORGANISMI GENETICAMENTE MODIFICATI E BIODIVERSITA’

La nota in merito all’aumento alla resistenza al glifosato da parte delle erbe infestanti riportata nel riferimento [38] è un interessante punto di partenza per discutere dell’argomento OGM-biodiversità, scopo del presente articolo. Infatti, il punto focale del predetto studio [38] è che l’aumento della resistenza al glifosato da parte delle erbe infestanti è conseguente alla coltivazione di soja Roundup® resistant. Il Roundup® è un fitofarmaco a base di glifosato [39]. La soja Roundup® resistant è un vegetale che non subisce danni da parte del glifosato. Nel momento in cui la soja Roundup® resistant viene coltivata, si può far gran uso di glifosato  per eliminare le erbe infestanti che competono con la soja per l’assunzione di nutrienti dal suolo. La velocità di riproduzione e crescita delle erbe infestanti consente una variabilità genetica molto elevata. Questo significa che, per effetto  degli errori casuali nella replicazione del DNA di cui si accennava in precedenza, è possibile che, tra le tante piantine infestanti, ne possa nascere qualcuna che sia resistente al glifosato. La conseguenza è che sono proprio queste ultime, più adatte a sopravvivere al citato erbicida, a prendere il sopravvento e a portare ad un uso sempre più massiccio di glifosato o di altre tipologie di erbicidi. In altre parole, la coltivazione della soja Roundup® resistant favorisce la biodiversità. Si tratta di un tipo di biodiversità economicamente dannosa e contro la quale bisogna applicare fitofarmaci dal forte impatto ambientale; ma il punto, per il momento, non è questo. Il punto è che l’uso di un sistema OGM  favorisce la biodiversità vegetale strettamente detta. Una situazione analoga, sebbene più utile sotto l’aspetto economico per gli agricoltori che decidono di farne uso, si verifica in tutti quei paesi in cui non sono validi i brevetti sulle piante OGM. Per esempio in India il cotone Bt prodotto dalla Monsanto è stato utilizzato per generare 137 differenti ibridi ognuno con proprietà ben specifiche [15]. La possibilità di avere un numero di specie vegetali potenzialmente infinito mediante l’uso dell’ingegneria genetica ha consentito di salvaguardare tanti prodotti tipici [15] come, per esempio, la papaya nelle Hawaii [40] o il pomodoro San Marzano [41] prodotto tipico Campano. In altre parole, sulla base delle definizioni oggettive date in merito a biodiversità e sistemi OGM, si può concludere che gli organismi geneticamente modificati possono essere considerati come risorsa per la biodiversità, piuttosto che come un problema come da più parti propagandato [42-44].

CONCLUSIONI

Gli organismi geneticamente modificati sono una risorsa per la biodiversità. Tuttavia, bisogna evidenziare che oltre ad una biodiversità economicamente conveniente, l’uso di coltivazioni OGM può generare una biodiversità vegetale contrastabile attraverso un uso progressivamente più massiccio di fitofarmaci potenzialmente dannosi per l’ambiente. Alla luce di questo, gli OGM devono essere condannati senza appello? La risposta è: certamente no. L’applicazione dell’ingegneria genetica all’agricoltura si inserisce nell’ambito di quella che è stata dichiarata in precedenza come “agricoltura sostenibile”. In altre parole, gli OGM devono essere pensati come complementari ai prodotti dell’agricoltura tradizionale (intensiva o meno) in modo da consentire la salvaguardia  sia dei prodotti tipici che di tutte le risorse ambientali non rinnovabili dalla cui “distruzione”, alla luce dei meccanismi che avvengono in natura, gli unici ad uscire sconfitti sono solo gli esseri umani.

RIFERIMENTI

1

https://www.crcpress.com/Environmental-Chemistry-Ninth-Edition/Manahan-     Manahan/p/book/9781420059205

2

https://www.researchgate.net/publication/279179431_Research_and_Application_of_Biochar_in_Europe

3

http://www.sinanet.isprambiente.it/gelso/tematiche/buone-pratiche-per-lagricoltura

4

http://sito.entecra.it/portale/public/documenti/Risultati/445a78ed-4c43-1944-62b0-4ee61d1615a1.pdf

5

http://dspace.inea.it/bitstream/inea/519/1/Agres_Metodi.pdf

6

http://www.isprambiente.gov.it/it/temi/biodiversita

7

http://www.bollatiboringhieri.it/scheda.php?codice=9788833927039

8

http://onlinelibrary.wiley.com/doi/10.1111/gcb.12517/full

9

http://link.springer.com/article/10.1007/s10460-009-9251-4

10

http://www.nature.com/articles/ncomms5151

11

http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12219/full

12

http://www.fao.org/docrep/006/y5418i/y5418i00.HTM

13

http://ec.europa.eu/agriculture/cap-post-2013/communication/com2010-672_it.pdf

14

http://www1.interno.gov.it/mininterno/export/sites/default/it/sezioni/sala_stampa/notizie/formazione_professionale/app_notizia_20084.html

15

Dario Bressanini, OGM tra leggende e realtà, Zanichelli, 2009 (http://online.scuola.zanichelli.it/chiavidilettura/ogm-tra-leggende-e-realta/)

16

Cristian De Duve, Alle origini della vita, Bollati Boringheri, 2011 (http://www.bollatiboringhieri.it/scheda.php?codice=9788833922072)

17

http://online.scuola.zanichelli.it/LupiaSaraceni_ScienzeIntegrate-files/Zanichelli_Lupia_Saraceni_Scienze_Sintesi_UB1.pdf

18

http://www.laputa.it/libri/da-animali-a-dei-breve-storia-dellumanita/

19 http://nut.entecra.it/files/download/Pubblicazioni_divulgative/inran_interno_web_bassaqualita.pdf

20

http://www.treccani.it/enciclopedia/golden-rice_(Enciclopedia-della-Scienza-e-della-Tecnica)/

21

http://www.msd-italia.it/altre/manuale/sez01/0030035.html

22

http://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:31990L0220&from=IT

23

Silvano Fuso, Naturale = Buono, Carocci editore, 2016 (http://www.carocci.it/index.php?option=com_carocci&task=schedalibro&Itemid=72&isbn=9788843079230)

24

http://www.linkiesta.it/it/article/2015/10/11/perche-gli-ogm-fanno-paura/27729/

25

http://www.prodottifitosanitari.net/imprese/elenco_imprese

26

http://www.beppegrillo.it/2013/07/passaparola_ogm_tolleranza_zero.html

27

http://www.slowfood.com/sloweurope/it/gli-ogm-in-europa/

28

http://www.siga.unina.it/circolari/Fascicolo_OGM.pdf

29

http://www.greenbiz.it/food/agricoltura/12679-ogm-2014

30

Pray & Ma, 2001, Impact of BT cotton in China, World Development, 29: 813-825 (http://www.sciencedirect.com/science/article/pii/S0305750X01000109)

31

Qiao, 2015, Fifteen Years of Bt Cotton in China: The Economic Impact and its Dynamics, World Development, 70: 177-185 (http://www.sciencedirect.com/science/article/pii/S0305750X15000121)

32

Qaim, 2003, Bt Cotton in India: Field Trial Results and Economic Projections, World Development, 31: 2115–2127 (http://www.sciencedirect.com/science/article/pii/S0305750X03001670)

33

Krishna &Qaim, 2012, Bt cotton and sustainability of pesticide reduction in India, Agricultural Systems, 107: 47-55 (http://www.sciencedirect.com/science/article/pii/S0308521X11001764)

34

Subramanian &Qaim, 2009, Village-wide effects of agricultural biotechnology: the case of Bt cotton in India, World Development, 37: 256-267 (http://www.sciencedirect.com/science/article/pii/S0305750X0800123X)

35

https://www.researchgate.net/profile/Clemens_Van_de_Wiel/publication/242115382_GM-related_sustainability_agro-ecological_impacts_risks_and_opportunities_of_soy_production_in_Argentina_and_Brazil/links/554725d30cf234bdb21db793.pdf

36

http://www.agbioforum.org/v8n23/v8n23a15-brookes.htm?&sa=U&ei=KojTVOKAL9CyogTSqYCgCg&ved=0CBQQFjAA&usg=AFQjCNH-zn1ERidarL6-x-Pnq3lsHjPUeg

37

Bonny, 2008, Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review, Agronomy for Sustainable Development, 28: 21-32 (http://link.springer.com/article/10.1051/agro:2007044)

38

Perry & al., 2016, Genetically engineered crops and pesticide use in U.S. maize and soybeans, Science Advances,

2(8), e1600850 (http://advances.sciencemag.org/content/2/8/e1600850.full.pdf+html)

39

http://www.laputa.it/blog/glifosato-pericolo-ambiente-innocuo-uomo/

40

http://www.gmo-compass.org/eng/grocery_shopping/fruit_vegetables/14.genetically_modified_papayas_virus_resistance.html

41

http://www.ncfap.org/documents/VirusResistantTomato.pdf

42

Facciamo chiarezza

43

http://cmsdata.iucn.org/downloads/ip_gmo_09_2007_1_.pdf

44

http://agroeco.org/wp-content/uploads/2010/09/garcia-altieri.pdf

Fonte dell’immagine di copertina: Wikimedia Commons

Violato il principio di indeterminazione di Heisenberg

Ebbene sì. Ho usato un titolo volutamente forte per introdurre una notizia che secondo me è veramente importante nel mondo della meccanica quantistica. Ho appena letto un interessantissimo lavoro in cui un team di ricercatori Spagnoli dichiara di aver scoperto che il principio di indeterminazione di Heisenberg può essere violato.

Cos’è questo principio? In soldoni, Heisenberg stabilì che non è possibile conoscere con lo stesso grado di accuratezza la posizione e la quantità di moto di una particella elementare.

Per spin di una particella elementare si intende, in modo molto semplicistico, la  rotazione della particella intorno a se stessa.

Se vogliamo conoscere il momento angolare di spin di una particella elementare, abbiamo bisogno di misurare delle grandezze che rispondono al principio elaborato da Heisenberg. Tuttavia, quando si decide di prendere in considerazione la misura del momento angolare dello spin nucleare, i limiti imposti dal principio di indeterminazione non sono più validi.

Non mi addentro nei particolari perché non voglio impelagarmi in troppi tecnicismi. Chi lo desidera, può leggere il lavoro pubblicato su Nature cliccando qui.  Alternativamente, la notizia riportata in modo più semplice è qui.

Voglio, tuttavia, fare una riflessione molto generale. Come la mettiamo, ora, con le correnti filosofiche che invocano il principio di indeterminazione per affermare che l’osservatore crea la realtà?

Ho sempre pensato che le pseudo filosofie che fanno elucubrazioni sulla base di estrapolazioni concettuali di teorie scientifiche la cui forza risiede nell’osservazione sperimentale, siano come castelli di sabbia. Nel momento in cui i modelli scientifici evolvono sulla base di nuove ipotesi predittive e di nuove indagini sperimentali, le pseudo filosofie si sgonfiano come palloncini di gomma bucati. Il lavoro pubblicato su Nature è l’esempio che non bisogna mai utilizzare una teoria scientifica fuori dal contesto per cui essa è stata elaborata. La conseguenza, altrimenti, è che tutto il castello costruito sulle basi suddette collassa nel momento in cui nuovi fatti si aggiungono a quelli esistenti e una nuova teoria sostituisce quella vecchia.

 

Anche agli scienziati piace scherzare. La bufala dell’uomo del Piltdown

Piltdown. Sussex. Gran Bretagna. Anno 1912. Viene ritrovato il cranio di un ominide a metà tra uomo e scimmia. L’annuncio del ritrovamento viene dato nel Dicembre dello stesso anno nel convegno della Geological Society of London. Qui i due autori della comunicazione, Dawson (autore del ritrovamento) e Woodward, battezzarono l’ominide a cui apparteneva il cranio col nome di Eoanthropus dawsoni o anche uomo del Piltdown.

Al momento della scoperta del cranio dell’uomo del Piltdown, la teoria dell’evoluzione di Darwin aveva circa 53 anni – la famosa “Origine delle specie” aveva visto la luce intorno al 1859 – e si rincorrevano le interpretazioni più disparate sia per la comprensione dell’origine dell’uomo, sia per denigrare la teoria anzidetta che toglieva l’essere umano dal centro del creato per porlo in una dimensione meno centrale dell’universo.

Origine della specie

Secondo le prime interpretazioni della teoria di Darwin, l’essere umano doveva essere considerato come un diretto discendente delle scimmie. In altre parole, le scimmie avrebbero subito nel corso del tempo  delle costanti e continue trasformazioni mediate sia dall’ambiente che dalle abilità necessarie a sopravvivere ai cambiamenti ambientali.Secondo questa interpretazione, il passaggio graduale dalla scimmia all’uomo deve necessariamente aver prodotto degli ominidi con caratteristiche intermedie tra le due specie.

Una via di mezzo

L’uomo del Piltdown si pone a metà tra la scimmia e l’uomo dal momento che mostra caratteristiche simili a quelle di una scimmia, nella parte mandibolare del cranio, ed a quelle dell’uomo, nella parte superiore del cranio. Si tratta, quindi, dell’anello mancante. Nel 1953, però, gli studiosi del British Natural History Museum e dell’Università di Oxford capirono che il cranio ritrovato da Dawson era un falso. Indagini successive hanno confermato l’origine truffaldina del cranio dell’uomo di Piltdown evidenziando che Dawson “limò” e mise assieme ossa umane (di circa 700 anni) con ossa di diverse tipologie di scimmia.

Oggi sappiamo che l’evoluzione non è andata come si credeva all’inizio del XX secolo.

In realtà, l’uomo, così come tutte le specie viventi, si è evoluto per come lo conosciamo oggi grazie all’azione congiunta di “caso e necessità”.  In altre parole, modifiche ambientali del tutto casuali – come terremoti ed inondazioni – alterano l’habitat tipico in cui gli organismi vivono. Nell’ambito di una stessa popolazione esiste un certo numero di individui che, a causa di modificazioni genetiche casuali, si ritrova ad essere maggiormente adattato alla sopravvivenza nelle nuove condizioni ambientali. Per questo motivo, proprio gli individui più abituati alle nuove condizioni ambientali riescono ad avere maggiore possibilità riproduttiva. La conseguenza è che, nel corso del tempo, gli individui più adatti sono quelli che predominano, mentre quelli meno adatti si estinguono. Grazie a questo modello evolutivo possiamo dire che non ci dobbiamo aspettare nessun “anello mancante”. Uno scherzo come quello effettuato nel 1912 oggi sarebbe solo una bufala da primo Aprile.

Per saperne di più

Svolta nella beffa del Piltdown

La bufala dell’uomo di Piltdown

Il pesce d’aprile del 1912

Share